Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Traditional cancer rate estimations are often limited in spatial resolutions and lack considerations of environmental factors. Satellite imagery has become a vital data source for monitoring diverse urban environments, supporting applications across environmental, socio-demographic, and public health domains. However, while deep learning (DL) tools, particularly convolutional neural networks, have demonstrated strong performance in extracting features from high-resolution imagery, their reliance on local spatial cues often limits their ability to capture complex, non-local, and higher-order structural information. To overcome this limitation, we propose a novel LLM-based multi-agent coordination system for satellite image analysis, which integrates visual and contextual reasoning through a simplicial contrastive learning framework (Agent- SNN). Our Agent-SNN contains two augmented superpixel-based graphs and maximizes mutual information between their latent simplicial complex representations, thereby enabling the system to learn both local and global topological features. The LLM-based agents generate structured prompts that guide the alignment of these representations across modalities. Experiments with satellite imagery of Los Angeles and San Diego demonstrate that Agent-SNN achieves signi cant improvements over state-of-the-art baselines in regional cancer prevalence estimation tasks.more » « lessFree, publicly-accessible full text available November 6, 2026
- 
            Satellite imagery is a readily available data source for monitoring a broad range of urban geographical contexts related to environmental, socio-demographic, and health disparities. To analyze satellite images, deep learning (DL) tools efficiently extract latent multi-dimensional characteristics, beyond identifying specific urban elements like roads and houses. However, current DL approaches tend to largely rely on Convolutional Neural Networks applied to high-resolution imagery, and as such may be limited to capturing only local contextual information. To address this fundamental limitation, we propose to fuse the modalities of satellite imagery and a large language model (LLM). In particular, we develop a novel LLM-based Simplicial Contrastive Learning model (LLM-SCL) based on mutual information maximization between the latent simplicial complex-level representations of two kinds of augmented (superpixel) graphs, which allows for cohesive integration of LLM prompts and learning of both local and global higher-order properties of satellite imagery (from all pixels in an image). Extensive experiments on satellite imagery at several resolutions in Tijuana, Mexico, Los Angeles and San Diego, USA, suggest that LLM-SCL significantly outperforms state-of-the-art baselines on unsupervised image classification tasks. As such, the proposed LLM-SCL opens a new path for more accurate evaluations of latent urban forms and their associations with environmental and health outcome disparities.more » « lessFree, publicly-accessible full text available April 6, 2026
- 
            Pre-training has emerged as a dominant paradigm in graph representation learning to address data scarcity and generalization challenges. The majority of existing methods primarily focus on refining fine-tuning and prompting techniques to extract information from pre-trained models. However, the effectiveness of these approaches is contingent upon the quality of the pre-trained knowledge (i.e., latent representations). Inspired by the recent success in topological representation learning, we propose a novel pre-training strategy to capture and learn topological information of graphs. The key to the success of our strategy is to pre-train expressive Graph Neural Networks (GNNs) at the levels of individual nodes while accounting for the key topological characteristics of a graph so that GNNs become sufficiently powerful to effectively encode input graph information. The proposed model is designed to be seamlessly integrated with various downstream graph representation learning tasks.more » « lessFree, publicly-accessible full text available April 6, 2026
- 
            Each year wildfires result in billions of dollars in property damage. Being one of the major natural hazards, wildfires nowadays are also a global affair whose negative impact is particularly devastating in developing countries. As wildfires are expected to become more frequent and severe, more accurate models to predict wildfires are vital to mitigating risks and developing more informed decision-making. Artificial intelligence (AI) has a potential to enhance wildfire risk analytics on multiple fronts. For example, deep learning (DL) has been successfully used to classify active fires, burned scars, smoke plumes and to track the spread of active wildfires. Since wildfire spread tends to exhibit highly complex spatio-temporal dependencies which often cannot be accurately described with conventional Euclideanbased approaches, we postulate that the tools of topological and geometric deep learning, specifically designed for non-Euclidean objects such as manifolds and graphs, may offer a more competitive solution. We validate the proposed methodology to predict wildfire occurrences in Greece and several regions of Africa. Our results indicate that the Firecast Zigzag Convolutional Network (F-ZCN) outperforms the current baseline methods for wildfire prediction and opens a path for more accurate wildfire risk analytics, even in scenarios of limited and noisy data records.more » « lessFree, publicly-accessible full text available December 15, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
