- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0014000000000000
- More
- Availability
-
05
- Author / Contributor
- Filter by Author / Creator
-
-
Zhou, Jiayu (5)
-
Liang, Siqi (2)
-
Meng, Han (2)
-
Ahn, Sumyeong (1)
-
Chen, Anqing (1)
-
Chen, Bin (1)
-
Chen, Ruoqiao (1)
-
Dhillon, Paramveer (1)
-
Dodge, Hiroko H (1)
-
He, Peng (1)
-
Hong, Junyuan (1)
-
Li, Tingting (1)
-
Wang, Zhangyang (1)
-
Zhang, Haobo (1)
-
Zheng, Wenqing (1)
-
Zhu, Haohao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Automated assessment of open responses in K–12 science education poses significant challenges due to the multimodal nature of student work, which often integrates textual explanations, drawings, and handwritten elements. Traditional evaluation methods that focus solely on textual analysis fail to capture the full breadth of student reasoning and are susceptible to biases such as handwriting neatness or answer length. In this paper, we propose a novel LLM-augmented multimodal evaluation framework that addresses these limitations through a comprehensive, bias-corrected grading system. Our approach leverages LLMs to generate causal knowledge graphs that encapsulate the essential conceptual relationships in student responses, comparing these graphs with those derived automatically from the rubrics and submissions. Experimental results demonstrate that our framework improves grading accuracy and consistency over deep supervised learning and few-shot LLM baselines.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Hong, Junyuan; Zheng, Wenqing; Meng, Han; Liang, Siqi; Chen, Anqing; Dodge, Hiroko H; Zhou, Jiayu; Wang, Zhangyang (, ICLR 2024 Workshop on Large Language Model (LLM) Agents)Free, publicly-accessible full text available March 11, 2026
-
Liang, Siqi; Ahn, Sumyeong; Dhillon, Paramveer; Zhou, Jiayu (, Association for Computational Linguistics)Free, publicly-accessible full text available January 1, 2026
-
Meng, Han; Chen, Ruoqiao; Chen, Bin; Zhou, Jiayu (, Society for Industrial and Applied Mathematics)Free, publicly-accessible full text available January 1, 2026
-
Zhang, Haobo; Zhou, Jiayu (, Association for Computational Linguistics)Free, publicly-accessible full text available January 1, 2026
An official website of the United States government
