skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 15 until 2:00 AM ET on Friday, January 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2538457

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract By comparing Cepheid brightnesses with geometric distance measures including Gaia EDR3 parallaxes, most recent analyses conclude metal-rich Cepheids are brighter, quantified asγ∼ −0.2 mag dex−1. While the value ofγhas little impact on the determination of the Hubble constant in contemporary distance ladders (due to the similarity of metallicity across these ladders),γplays a role in gauging the distances to metal-poor dwarf galaxies like the Magellanic Clouds and is of considerable interest in testing stellar models. Recently, B. F. Madore & W. L. Freedman (hereafter MF25) recalibrated Gaia EDR3 parallaxes by adding to them a magnitude offset to match certain historic Cepheid parallaxes, which otherwise differ by ∼1.6σ. A calibration that adjusts Gaia parallaxes by applying a magnitude offset (i.e., a multiplicative correction in parallax) differs significantly from the Gaia Team’s calibration, which is additive in parallax space—especially at distances much closer than 1 kpc or beyond 10 kpc, outside the ∼2–3 kpc range on which the MF25 calibration was based. The MF25 approach reducesγto zero. If broadly applied, it places nearby cluster distances like the Pleiades too close compared to independent measurements, while leaving distant quasars with negative parallaxes. We conclude that the MF25 proposal for Gaia calibration andγ∼ 0 produces farther-reaching consequences, many of which are strongly disfavored by the data. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  2. Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030Mand an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms. 
    more » « less
    Free, publicly-accessible full text available September 3, 2026
  3. Abstract We present the confirmation of TOI-5573 b, a Saturn-sized exoplanet on an 8.79 days orbit around an early M dwarf (3790 K, 0.59R, 0.61M, 12.30 Jmag). TOI-5573 b has a mass of 11 2 19 + 18 M(0.35 ± 0.06MJup) and a radius of 9.75 ± 0.47R(0.87 ± 0.04RJup), resulting in a density of 0.6 6 0.13 + 0.16 g cm−3, akin to that of Saturn. The planet was initially discovered by the Transiting Exoplanet Survey Satellite (TESS) and confirmed using a combination of 11 transits from four TESS Sectors (20, 21, 47, and 74), ground-based photometry from the Red Buttes Observatory, and high-precision radial velocity data from the Habitable-zone Planet Finder and NN-EXPLORE Exoplanet Investigations with Doppler spectrographs, achieving a 5σprecision on the planet’s mass. TOI-5573 b is one of the coolest Saturn-like exoplanets discovered around an M-dwarf, with an equilibrium temperature of only 528 ± 10 K, making it a valuable target for atmospheric characterization. Saturn-like exoplanets around M dwarfs likely form through core accretion, with increased disk opacity slowing gas accretion and limiting their mass. The host star’s supersolar metallicity supports core accretion, but uncertainties in M-dwarf metallicity estimates complicate definitive conclusions. Compared to other GEMS (Giant Exoplanets around M-dwarf Stars) orbiting metal-rich stars, TOI-5573 b aligns with the observed pattern that giant planets preferentially form around M-dwarfs with supersolar metallicity. Further high-resolution spectroscopic observations are needed to explore the role of stellar metallicity in shaping the formation and properties of giant exoplanets like TOI-5573 b. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  4. ABSTRACT We report the first instance of an M dwarf/brown dwarf obliquity measurement for the TOI-2119 system using the Rossiter–McLaughlin effect. TOI-2119 b is a transiting brown dwarf orbiting a young, active early M dwarf ($$T_{\rm {eff}}$$ = 3553 K). It has a mass of 64.4 M$$_{\rm {J}}$$ and radius of 1.08 R$$_{\rm {J}}$$, with an eccentric orbit (e = 0.3) at a period of 7.2 d. For this analysis, we utilize NEID spectroscopic transit observations and ground-based simultaneous transit photometry from the Astrophysical Research Consortium and the Las Campanas Remote Observatory. We fit all available data of TOI-2119 b to refine the brown dwarf parameters and update the ephemeris. The classical Rossiter–McLaughlin technique yields a projected star–planet obliquity of $$\lambda =-0.8\pm 1.1^\circ$$ and a three-dimensional obliquity of $$\psi =15.7\pm 5.5^\circ$$. Additionally, we spatially resolve the stellar surface of TOI-2119 utilizing the Reloaded Rossiter–McLaughlin technique to determine the projected star–planet obliquity as $$\lambda =1.26 \pm 1.3^{\circ }$$. Both of these results agree within $$2\sigma$$ and confirm the system is aligned, where TOI-2119 b joins an emerging group of aligned brown dwarf obliquities. We also probe stellar surface activity on the surface of TOI-2119 in the form of centre-to-limb variations as well as the potential for differential rotation. Overall, we find tentative evidence for centre-to-limb variations on the star but do not detect evidence of differential rotation. 
    more » « less
  5. Abstract We present the discovery of a low-density planet orbiting the high-metallicity early M-dwarf TOI-5688 A b. This planet was characterized as part of the search for transiting giant planets (R ≳ 8R) through the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. The planet was discovered with the Transiting Exoplanet Survey Satellite, and characterized with ground-based transits from Red Buttes Observatory, the Table Mountain Observatory of Pomona College, and radial velocity (RV) measurements with the Habitable-Zone Planet Finder on the 10 m Hobby Eberly Telescope and NEID on the WIYN 3.5 m telescope. From the joint fit of transit and RV data, we measure a planetary mass and radius of 124 ± 24M(0.39 ± 0.07MJ) and 10.4 ± 0.7R(0.92 ± 0.06RJ), respectively. The spectroscopic and photometric analysis of the host star TOI-5688 A shows that it is a metal-rich ([Fe/H] = 0.47 ± 0.16 dex) M2V star, favoring the core-accretion formation pathway as the likely formation scenario for this planet. Additionally, Gaia astrometry suggests the presence of a wide-separation binary companion, TOI-5688 B, which has a projected separation of ~5″ (1110 au) and is an M4V, making TOI-5688 A b part of the growing number of GEMS in wide-separation binary systems. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  6. Abstract The “super-puffs” are a population of planets that have masses comparable to that of Neptune but radii similar to Jupiter, leading to extremely low bulk densities (ρp ≲ 0.2 g cm−3) that are not easily explained by standard core accretion models. Interestingly, several of these super-puffs are found in orbits significantly misaligned with their host stars’ spin axes, indicating past dynamical excitation that may be connected to their low densities. Here, we present new Magellan/Planet Finder Spectrograph radial velocity measurements of WASP-193, a late F star hosting one of the least dense transiting planets known to date ( M p = 0.11 2 0.034 + 0.029 M J , R p = 1.31 9 0.048 + 0.056 R J p = 0.060 ± 0.019 g cm−3). We refine the bulk properties of WASP-193 b and use interior structure models to determine that the planet can be explained if it consists of roughly equal amounts of metals and H/He, with a metal fraction ofZ= 0.42. The planet is likely substantially reinflated due to its host star’s evolution, and expected to be actively undergoing mass loss. We also measure the projected stellar obliquity using the Rossiter–McLaughlin effect, finding that WASP-193 b is on an orbit well aligned with the stellar equator, with λ = 1 6 15 + 16 degrees. WASP-193 b is the first Jupiter-sized super-puff on a relatively well-aligned orbit, suggesting a diversity of formation pathways for this population of planets. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  7. Abstract The Hubble Tension, a >5σdiscrepancy between direct and indirect measurements of the Hubble constant (H0), has persisted for a decade and motivated intense scrutiny of the paths used to inferH0. Comparing independently derived distances for a set of galaxies with different standard candles, such as the tip of the red giant branch (TRGB) and Cepheid variables, can test for systematics in the middle rung of the distance ladder. TheIband is the preferred filter for measuring the TRGB due to constancy with color, a result of low sensitivity to population differences in age and metallicity supported by stellar models. We use James Webb Space Telescope (JWST) observations with the maser host NGC 4258 as our geometric anchor to measureI-band (F090W versus F090W − F150W) TRGB distances to eight hosts of 10 Type Ia supernovae (SNe Ia) within 28 Mpc: NGC 1448, NGC 1559, NGC 2525, NGC 3370, NGC 3447, NGC 5584, NGC 5643, and NGC 5861. We compare these with Hubble Space Telescope (HST) Cepheid-based relative distance moduli for the same galaxies and anchor. We find no evidence of a difference between their weighted means, 0.01 ± 0.04 (stat) ± 0.04 (sys) mag. We produce 14 variants of the TRGB analysis, altering the smoothing level and color range used to measure the tips to explore their impact. For some hosts, this changes the identification of the strongest peak, but this causes little change to the sample mean difference, producing a full range of 0.00–0.02 mag, all consistent at 1σwith no difference. The result matches past comparisons ofI-band TRGB and Cepheids when both use HST. SNe and anchor samples observed with JWST are too small to yield a measure ofH0that is competitive with the HST sample of 42 SNe Ia and 4 anchors; however, they already provide a vital systematic cross-check to HST measurements of the distance ladder. 
    more » « less
  8. Abstract We cross-check the Hubble Space Telescope (HST) Cepheid/Type Ia supernova (SN Ia) distance ladder, which yields the most precise localH0, against early James Webb Space Telescope (JWST) subsamples (∼1/4 of the HST sample) from SH0ES and CCHP, calibrated only with NGC 4258. We find HST Cepheid distances agree well (∼1σ) with all combinations of methods, samples, and telescopes. The comparisons explicitly include the measurement uncertainty of each method in NGC 4258, an oft-neglected but dominant term. Mean differences are ∼0.03 mag, far smaller than the 0.18 mag “Hubble tension.” Combining all measures produces the strongest constraint yet on the linearity of HST Cepheid distances, 0.994 ±0.010, ruling out distance-dependent bias or offset as the source of the tension at ∼7σ. However, current JWST subsamples produce large sampling differences in H0whose size and direction we can directly estimate from the full HST set. We show that ΔH0∼ 2.5 km s−1Mpc−1between the CCHP JWST program and the full HST sample is entirely consistent with differences in sample selection. We combine all JWST samples into a new distance-limited set of 16 SNe Ia atD≤ 25 Mpc. Using JWST Cepheids, JAGB, and tip of the red giant branch, we find 73.4 ± 2.1, 72.2 ± 2.2, and 72.1 ± 2.2 km s−1Mpc−1, respectively. Explicitly accounting for common supernovae, the three-method JWST result isH0= 72.6 ± 2.0, similar toH0= 72.8 expected from HST Cepheids in the same galaxies. The small JWST sample trivially lowers the Hubble tension significance due to small-sample statistics and is not yet competitive with the HST set (42 SNe Ia and 4 anchors), which yields 73.2 ± 0.9. Still, the joint JWST sample provides important cross-checks that the HST data pass. 
    more » « less
  9. Abstract EX Lupi, a low-mass young stellar object, went into an accretion-driven outburst in 2022 March. The outburst caused a sudden phase change of ∼112° ± 5° in periodically oscillating multiband lightcurves. Our high-resolution spectra obtained with the High Resolution Spectrograph (HRS) on board the Southern African Large Telescope also revealed a consistent phase change in the periodically varying radial velocities (RVs), along with an increase in the RV amplitude of various emission lines. The phase change and increase in RV amplitude morphologically translates to a change in the azimuthal and latitudinal location of the accretion hotspot over the stellar surface, which indicates a reconfiguration of the accretion funnel geometry. Our three-dimensional magnetohydrodynamic simulations reproduce the phase change for EX Lupi. To explain the observations, we explored the possibility of forward shifting of the dipolar accretion funnel as well as the possibility of the emergence of a new accretion funnel. During the outburst, we also found evidence of the hotspot’s morphology extending azimuthally asymmetrically with a leading hot edge and cold tail along the stellar rotation. Further, our high-cadence photometry showed that the accretion flow has clumps. We also detected possible clumpy accretion events in the HRS spectra that showed episodically highly blueshifted wings in the CaiiIR triplet and Balmer H lines. 
    more » « less
  10. Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius R p = 3.37 0.20 + 0.15 R , mass m p = 16.4 4.1 + 4.1 M , and density ρ p = 2.32 0.37 + 0.38 g cm 3 for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period P sup 430 days and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of m b = 13.3 4.5 + 4.7 M for TOI-2015 b and m c = 6.8 2.3 + 3.5 M for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system. 
    more » « less