Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alam, Mohammad S; Asari, Vijayan K (Ed.)Free, publicly-accessible full text available May 28, 2026
-
Alam, Mohammad S; Asari, Vijayan K (Ed.)Free, publicly-accessible full text available May 28, 2026
-
Alam, Mohammad S; Asari, Vijayan K (Ed.)Free, publicly-accessible full text available May 28, 2026
-
Alam, Mohammad S; Asari, Vijayan K (Ed.)Iris recognition is a reliable biometric identification method known for its low false-acceptance rates. However, capturing ideal iris images is often challenging and time-consuming, which can degrade the performance of iris recognition systems when using non-ideal images. Enhancing iris recognition performance for non-ideal images would expedite and make the process more flexible. Off-angle iris images are a common type of non-ideal iris images, and converting them to their frontal version is not as simple as making geometric transformations on the off-angle iris images. Due to challenging factors such as corneal refraction and limbus occlusion, frontal projection requires a more comprehensive approach. Pix2Pix generative adversarial networks (GANs), with their pairwise image conversion capability, provide the ideal foil for such a tailored approach. We demonstrate how Pix2Pix GANs can effectively be used for the problem of converting off-angle iris images to frontal iris images. We provide a comprehensive exploration of techniques using Pix2Pix GAN to enhance off-angle to frontal iris image transformation by introducing variations in the loss functions of Pix2Pix GAN for better capturing the iris textures and the low contrast, changing the medium of input from normalized iris to iris codes, and ultimately delving deeper into studying which regions of the Gabor filters contribute the most to iris recognition performance.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Alam, Mohammad S; Asari, Vijayan K (Ed.)
-
Agaian, Sos S; DelMarco, Stephen P; Asari, Vijayan K (Ed.)
-
Alam, Mohammad S.; Asari, Vijayan K. (Ed.)
-
Alam, Mohammad S.; Asari, Vijayan K. (Ed.)Iris recognition is one of the well-known areas of biometric research. However, in real-world scenarios, subjects may not always provide fully open eyes, which can negatively impact the performance of existing systems. Therefore, the detection of blinking eyes in iris images is crucial to ensure reliable biometric data. In this paper, we propose a deep learning-based method using a convolutional neural network to classify blinking eyes in off-angle iris images into four different categories: fully-blinked, half-blinked, half-opened, and fully-opened. The dataset used in our experiments includes 6500 images of 113 subjects and contains images of a mixture of both frontal and off-angle views of the eyes from -50 to 50 in gaze angle. We train and test our approach using both frontal and off-angle images and achieve high classification performance for both types of images. Compared to training the network with only frontal images, our approach shows significantly better performance when tested on off-angle images. These findings suggest that training the model with a more diverse set of off-angle images can improve its performance for off-angle blink detection, which is crucial for real-world applications where the iris images are often captured at different angles. Overall, the deep learning-based blink detection method can be used as a standalone algorithm or integrated into existing standoff biometrics frameworks to improve their accuracy and reliability, particularly in scenarios where subjects may blink.more » « less
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)Iris recognition is a widely used biometric technology that has high accuracy and reliability in well-controlled environments. However, the recognition accuracy can significantly degrade in non-ideal scenarios, such as off-angle iris images. To address these challenges, deep learning frameworks have been proposed to identify subjects through their off-angle iris images. Traditional CNN-based iris recognition systems train a single deep network using multiple off-angle iris image of the same subject to extract the gaze invariant features and test incoming off-angle images with this single network to classify it into same subject class. In another approach, multiple shallow networks are trained for each gaze angle that will be the experts for specific gaze angles. When testing an off-angle iris image, we first estimate the gaze angle and feed the probe image to its corresponding network for recognition. In this paper, we present an analysis of the performance of both single and multimodal deep learning frameworks to identify subjects through their off-angle iris images. Specifically, we compare the performance of a single AlexNet with multiple SqueezeNet models. SqueezeNet is a variation of the AlexNet that uses 50x fewer parameters and is optimized for devices with limited computational resources. Multi-model approach using multiple shallow networks, where each network is an expert for a specific gaze angle. Our experiments are conducted on an off-angle iris dataset consisting of 100 subjects captured at 10-degree intervals between -50 to +50 degrees. The results indicate that angles that are more distant from the trained angles have lower model accuracy than the angles that are closer to the trained gaze angle. Our findings suggest that the use of SqueezeNet, which requires fewer parameters than AlexNet, can enable iris recognition on devices with limited computational resources while maintaining accuracy. Overall, the results of this study can contribute to the development of more robust iris recognition systems that can perform well in non-ideal scenarios.more » « less
-
Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
An official website of the United States government
