skip to main content


Search for: All records

Editors contains: "Betancourt, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betancourt, Andrea (Ed.)
    Abstract Evolutionary processes driving physiological trait variation depend on the underlying genomic mechanisms. Evolution of these mechanisms depends on the genetic complexity (involving many genes) and how gene expression impacting the traits is converted to phenotype. Yet, genomic mechanisms that impact physiological traits are diverse and context dependent (e.g., vary by environment and tissues), making them difficult to discern. We examine the relationships between genotype, mRNA expression, and physiological traits to discern the genetic complexity and whether the gene expression affecting the physiological traits is primarily cis- or trans-acting. We use low-coverage whole genome sequencing and heart- or brain-specific mRNA expression to identify polymorphisms directly associated with physiological traits and expressed quantitative trait loci (eQTL) indirectly associated with variation in six temperature specific physiological traits (standard metabolic rate, thermal tolerance, and four substrate specific cardiac metabolic rates). Focusing on a select set of mRNAs belonging to co-expression modules that explain up to 82% of temperature specific traits, we identified hundreds of significant eQTL for mRNA whose expression affects physiological traits. Surprisingly, most eQTL (97.4% for heart and 96.7% for brain) were trans-acting. This could be due to higher effect size of trans- versus cis-acting eQTL for mRNAs that are central to co-expression modules. That is, we may have enhanced the identification of trans-acting factors by looking for single nucleotide polymorphisms associated with mRNAs in co-expression modules that broadly influence gene expression patterns. Overall, these data indicate that the genomic mechanism driving physiological variation across environments is driven by trans-acting heart- or brain-specific mRNA expression. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Betancourt, Andrea (Ed.)
    Abstract Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We, therefore, used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window, or FST_MaxSNP) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that FST_MaxSNP had superior power to detect complete or mostly complete soft sweeps, but lesser power than full-window statistics to detect partial hard sweeps. Nonetheless, the power of FST_MaxSNP depended highly on sample size, and confident outliers depend on robust precautions and quality control. To investigate the relative enrichment of FST_MaxSNP outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that FST_MaxSNP had a genome-wide enrichment of outliers compared with demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that FST_MaxSNP is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies. 
    more » « less
  3. Betancourt, Andrea (Ed.)
    Abstract Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis. 
    more » « less