skip to main content


Search for: All records

Editors contains: "Bethard, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Duh, Kevin ; Gomez, Helena ; Bethard, Steven (Ed.)
    Free, publicly-accessible full text available June 17, 2025
  2. Duh, Kevin ; G'omez-Adorno, Helena ; Bethard, Steven (Ed.)
    The field of relation extraction (RE) is experiencing a notable shift towards generative relation extraction (GRE), leveraging the capabilities of large language models (LLMs). However, we discovered that traditional relation extraction (RE) metrics like precision and recall fall short in evaluating GRE methods. This shortfall arises because these metrics rely on exact matching with human-annotated reference relations, while GRE methods often produce diverse and semantically accurate relations that differ from the references. To fill this gap, we introduce GENRES for a multidimensional assessment in terms of the topic similarity, uniqueness, granularity, factualness, and completeness of the GRE results. With GENRES, we empirically identified that (1) precision/recall fails to justify the performance of GRE methods; (2) human-annotated referential relations can be incomplete; (3) prompting LLMs with a fixed set of relations or entities can cause hallucinations. Next, we conducted a human evaluation of GRE methods that shows GENRES is consistent with human preferences for RE quality. Last, we made a comprehensive evaluation of fourteen leading LLMs using GENRES across document, bag, and sentence level RE datasets, respectively, to set the benchmark for future research in GRE. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Duh, Kevin ; G'omez-Adorno, Helena ; Bethard, Steven (Ed.)
    The advent of large language models (LLMs) has significantly advanced natural language processing tasks like text summarization. However, their large size and computational demands, coupled with privacy concerns in data transmission, limit their use in resourceconstrained and privacy-centric settings. To overcome this, we introduce TriSum, a framework for distilling LLMs’ text summarization abilities into a compact, local model. Initially, LLMs extract a set of aspect-triple rationales and summaries, which are refined using a dualscoring method for quality. Next, a smaller local model is trained with these tasks, employing a curriculum learning strategy that evolves from simple to complex tasks. Our method enhances local model performance on various benchmarks (CNN/DailyMail, XSum, and ClinicalTrial), outperforming baselines by 4.5%, 8.5%, and 7.4%, respectively. It also improves interpretability by providing insights into the summarization rationale. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025