skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Buchler, Nicolas E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Buchler, Nicolas E (Ed.)
    ABSTRACT Infectious diseases remain a major cause of global mortality, yet basic questions concerning the relationship between within-host processes governing pathogen burden (pathogen replication, immune responses) and population-scale (epidemiological) patterns of mortality remain obscure. We use a structured literature review to leverage the extensive biomedical data generated by controlled host infections to address the epidemiological question of whether infection-induced mortality is constant, accelerating, or follows some other pattern of change and to infer the within-host mechanistic basis of this pattern. We show that across diverse lethal infection models, the risk of death increases approximately exponentially in time since infection, in a manner phenomenologically similar to the dynamics of all-cause death. We further show that this pattern of accelerating risk is consistent with multiple alternate mechanisms of pathogen growth and host-pathogen interaction, underlining the limitations of current experimental approaches to connect within-host processes to epidemiological patterns. We review critical experimental questions that our work highlights, requiring additional non-invasive data on pathogen burden throughout the course of infection.IMPORTANCEHere, we ask a simple question: what are the dynamics of pathogen-induced death? Death is a central phenotype in both biomedical and epidemiological infectious disease biology, yet very little work has attempted to link the biomedical focus on pathogen dynamics within a host and the epidemiological focus on populations of infected hosts. To systematically characterize the dynamics of death in controlled animal infections, we analyzed 209 data sets spanning diverse lethal animal infection models. Across experimental models, we find robust support for an accelerating risk of death since the time of infection, contrasting with conventional epidemiological models that assume a constant elevated risk of death. Using math models, we show that multiple processes of growth and virulence are consistent with accelerating risk of death, and we end with a discussion of critical experiments to resolve how within-host biomedical processes map onto epidemiological patterns of disease. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026