- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01100000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Antunes, A (1)
-
Antunes, N. (1)
-
Banerjee, S (1)
-
Bhamidi, S (1)
-
Bhamidi, S. (1)
-
Pipiras, V (1)
-
Pipiras, V. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Cherifi, C (1)
-
Cherifi, C. (1)
-
Cherifi, H (1)
-
Cherifi, H. (1)
-
Donduran, M (1)
-
Mantegna, R.N. (1)
-
Micciche, S. (1)
-
Rocha, L M (1)
-
Rocha, L.M. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cherifi, H ; Rocha, L M ; Cherifi, C ; Donduran, M (Ed.)Free, publicly-accessible full text available February 20, 2025
-
Antunes, N. ; Bhamidi, S. ; Pipiras, V. ( , Complex Networks and Their Applications XI)Cherifi, H. ; Mantegna, R.N. ; Rocha, L.M. ; Cherifi, C. ; Micciche, S. (Ed.)We investigate the statistical learning of nodal attribute distributions in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied, where new nodes form connections dependent on both their attribute values and popularity as measured by degree. We consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. The performance of such algorithms is studied on both synthetic networks and real world systems, and its dependence on the degree of homophily, or absence thereof, is assessed.more » « less