Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fu, Feng (Ed.)With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest thatKRTAP3-1,KRTAP3-3, andKRTAP3-5share regulatory elements in skin and pancreas. Furthermore, we find thatCELA3AandCELA3Bshare associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.more » « less
-
Fu, Feng (Ed.)Undetected infections fuel the dissemination of many infectious agents. However, identification of unobserved infectious individuals remains challenging due to limited observations of infections and imperfect knowledge of key transmission parameters. Here, we use an ensemble Bayesian inference method to infer unobserved infections using partial observations. The ensemble inference method can represent uncertainty in model parameters and update model states using all ensemble members collectively. We perform extensive experiments in both model-generated and real-world networks in which individuals have differential but unknown transmission rates. The ensemble method outperforms several alternative approaches for a variety of network structures and observation rates, despite that the model is mis-specified. Additionally, the computational complexity of this algorithm scales almost linearly with the number of nodes in the network and the number of observations, respectively, exhibiting the potential to apply to large-scale networks. The inference method may support decision-making under uncertainty and be adapted for use for other dynamical models in networks.more » « less
-
Fu, Feng (Ed.)Network science has increasingly become central to the field of epidemiology and our ability to respond to infectious disease threats. However, many networks derived from modern datasets are not just large, but dense, with a high ratio of edges to nodes. This includes human mobility networks where most locations have a large number of links to many other locations. Simulating large-scale epidemics requires substantial computational resources and in many cases is practically infeasible. One way to reduce the computational cost of simulating epidemics on these networks is sparsification , where a representative subset of edges is selected based on some measure of their importance. We test several sparsification strategies, ranging from naive thresholding to random sampling of edges, on mobility data from the U.S. Following recent work in computer science, we find that the most accurate approach uses the effective resistances of edges, which prioritizes edges that are the only efficient way to travel between their endpoints. The resulting sparse network preserves many aspects of the behavior of an SIR model, including both global quantities, like the epidemic size, and local details of stochastic events, including the probability each node becomes infected and its distribution of arrival times. This holds even when the sparse network preserves fewer than 10% of the edges of the original network. In addition to its practical utility, this method helps illuminate which links of a weighted, undirected network are most important to disease spread.more » « less
-
Fu, Feng (Ed.)When two streams of pedestrians cross at an angle, striped patterns spontaneously emerge as a result of local pedestrian interactions. This clear case of self-organized pattern formation remains to be elucidated. In counterflows, with a crossing angle of 180°, alternating lanes of traffic are commonly observed moving in opposite directions, whereas in crossing flows at an angle of 90°, diagonal stripes have been reported. Naka (1977) hypothesized that stripe orientation is perpendicular to the bisector of the crossing angle. However, studies of crossing flows at acute and obtuse angles remain underdeveloped. We tested the bisector hypothesis in experiments on small groups (18-19 participants each) crossing at seven angles (30° intervals), and analyzed the geometric properties of stripes. We present two novel computational methods for analyzing striped patterns in pedestrian data: (i) an edge-cutting algorithm, which detects the dynamic formation of stripes and allows us to measure local properties of individual stripes; and (ii) a pattern-matching technique, based on the Gabor function, which allows us to estimate global properties (orientation and wavelength) of the striped pattern at a time T . We find an invariant property: stripes in the two groups are parallel and perpendicular to the bisector at all crossing angles. In contrast, other properties depend on the crossing angle: stripe spacing (wavelength), stripe size (number of pedestrians per stripe), and crossing time all decrease as the crossing angle increases from 30° to 180°, whereas the number of stripes increases with crossing angle. We also observe that the width of individual stripes is dynamically squeezed as the two groups cross each other. The findings thus support the bisector hypothesis at a wide range of crossing angles, although the theoretical reasons for this invariant remain unclear. The present results provide empirical constraints on theoretical studies and computational models of crossing flows.more » « less
An official website of the United States government
