skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Hain, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hain, Richard (Ed.)
    Suppose a residually finite group G acts cocompactly on a contractible complex with strict fundamental domain Q, where the stabilizers are either trivial or have normal Z-subgroups. Let dQ be the subcomplex of Q with nontrivial stabilizers. Our main result is a computation of the homology torsion growth of a chain of finite index normal subgroups of G. We show that independent of the chain, the normalized torsion limits to the torsion of dQ shifted a degree. Under milder assumptions of acyclicity of nontrivial stabilizers, we show similar formulas for the mod p-homology growth. We also obtain formulas for the universal and the usual L^2-torsion of G in terms of the torsion of stabilizers and topology of dQ. In particular, we get complete answers for right-angled Artin groups, which shows that they satisfy a torsion analogue of Lück’s approximation theorem. 
    more » « less