skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Heinmann, Tobias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oguz, Ipek; Noble, Jack; Li, Xiaoxiao; Styner, Martin; Baumgartner, Christian; Rusu, Mirabela; Heinmann, Tobias; Kontos, Despina; Landman, Bennett; Dawant, Benoit (Ed.)
    Many applications in machine vision and medical imaging require the capture of images from a scene with very low radiance, which may result in very noisy images and videos. An important example of such an application is the imaging of fluorescently-labeled tissue in fluorescence-guided surgery. Medical imaging systems, especially when intended to be used in surgery, are designed to operate in well-lit environments and use optical filters, time division, or other strategies that allow the simultaneous capture of low radiance fluorescence video and a well-lit visible light video of the scene. This work demonstrates video denoising can be dramatically improved by utilizing deep learning together with motion and textural cues from the noise-free video. 
    more » « less