skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Editors contains: "Ho, Ho-Pui A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vo-Dinh, Tuan ; Ho, Ho-Pui A. ; Ray, Krishanu (Ed.)
  2. Vo-Dinh, Tuan ; Ho, Ho-Pui A. ; Ray, Krishanu (Ed.)
    Alternating current (AC) modulation of command voltage applied across a Self-induced Back Action Actuated Nanopore Electrophoresis (SANE) sensor, a type of plasmonic nanopore sensor that we have developed previously, enables acquisition of new data types that could potentially enhance the characterization of nanoparticles (NPs) and single molecules. In particular, AC voltage frequency response provides insight into the charge and dielectric constant of analytes that are normally obfuscated using DC command voltages. We first analyzed Axopatch 200B data to map the frequency response of the empty SANE sensor in terms of phase shift and amplitude modulation, with and without plasmonic excitation. We then tested the frequency response of 20 nm diameter silica NPs and 20 nm gold NPs trapped optically, which made these particles hover over an underlying 25 nm nanopore at the center of the SANE sensor. By applying a DC command voltage with a superimposed AC frequency sweep while keeping the NPs optically trapped in the vicinity of the nanopores’s entrance, we have found that silica and gold NPs to have distinctly different electrical responses. This pilot work demonstrates the feasibility of performing AC measurements with a plasmonic nanopore, which encourages us to pursue more detailed characterization studies with NPs and single molecules in future work. 
    more » « less
  3. Vo-Dinh, Tuan ; Ho, Ho-Pui A. ; Ray, Krishanu (Ed.)