skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Mank, Judith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mank, Judith (Ed.)
    Abstract Urosaurus nigricaudus is a phrynosomatid lizard endemic to the Baja California Peninsula in Mexico. This work presents a chromosome-level genome assembly and annotation from a male individual. We used PacBio long reads and HiRise scaffolding to generate a high-quality genomic assembly of 1.87 Gb distributed in 327 scaffolds, with an N50 of 279 Mb and an L50 of 3. Approximately 98.4% of the genome is contained in 14 scaffolds, with 6 large scaffolds (334–127 Mb) representing macrochromosomes and 8 small scaffolds (63–22 Mb) representing microchromosomes. Using standard gene modeling and transcriptomic data, we predicted 17,902 protein-coding genes on the genome. The repeat content is characterized by a large proportion of long interspersed nuclear elements that are relatively old. Synteny analysis revealed some microchromosomes with high repeat content are more prone to rearrangements but that both macro- and microchromosomes are well conserved across reptiles. We identified scaffold 14 as the X chromosome. This microchromosome presents perfect dosage compensation where the single X of males has the same expression levels as two X chromosomes in females. Finally, we estimated the effective population size for U. nigricaudus was extremely low, which may reflect a reduction in polymorphism related to it becoming a peninsular endemic. 
    more » « less
  2. Mank, Judith (Ed.)
    Abstract The X chromosome of therian mammals shows strong conservation among distantly related species, limiting insights into the distinct selective processes that have shaped sex chromosome evolution. We constructed a chromosome-scale de novo genome assembly for the Siberian dwarf hamster (Phodopus sungorus), a species reported to show extensive recombination suppression across an entire arm of the X chromosome. Combining a physical genome assembly based on shotgun and long-range proximity ligation sequencing with a dense genetic map, we detected widespread suppression of female recombination across ∼65% of the Phodopus X chromosome. This region of suppressed recombination likely corresponds to the Xp arm, which has previously been shown to be highly heterochromatic. Using additional sequencing data from two closely related species (P. campbelli and P. roborovskii), we show that recombination suppression on Xp appears to be independent of major structural rearrangements. The suppressed Xp arm was enriched for several transposable element families and de-enriched for genes primarily expressed in placenta, but otherwise showed similar gene densities, expression patterns, and rates of molecular evolution when compared to the recombinant Xq arm. Phodopus Xp gene content and order was also broadly conserved relative to the more distantly related rat X chromosome. These data suggest that widespread suppression of recombination has likely evolved through the transient induction of facultative heterochromatin on the Phodopus Xp arm without major changes in chromosome structure or genetic content. Thus, substantial changes in the recombination landscape have so far had relatively subtle influences on patterns of X-linked molecular evolution in these species. 
    more » « less
  3. Mank, Judith (Ed.)
    Abstract Many animal species are haplodiploid: their fertilized eggs develop into diploid females and their unfertilized eggs develop into haploid males. The unique genetic features of haplodiploidy raise the prospect that these systems can be used to disentangle the population genetic consequences of haploid and diploid selection. To this end, sex-specific reproductive genes are of particular interest because, while they are shared within the same genome, they consistently experience selection in different ploidal environments. However, other features of these genes, including sex-specific expression and putative involvement in postcopulatory sexual selection, are potentially confounding factors because they may also impact the efficacy of selection asymmetrically between the sexes. Thus, to properly interpret evolutionary genomic patterns, it is necessary to generate a null expectation for the relative amount of polymorphism and divergence we expect to observe among sex-specific genes in haplodiploid species, given differences in ploidal environment, sex-limited expression, and their potential role in sexual selection. Here, we derive the theoretical expectation for the rate of evolution of sex-specific genes in haplodiploid species, under the assumption that they experience the same selective environment as genes expressed in both sexes. We find that the null expectation is that reproductive genes evolve more rapidly than constitutively expressed genes in haplodiploid genomes. However, despite the aforementioned differences, the null expectation does not differ between male- and female-specific reproductive genes, when assuming additivity. Our theoretical results provide an important baseline expectation that should be used in molecular evolution studies comparing rates of evolution among classes of genes in haplodiploid species. 
    more » « less
  4. Malik, Harmit Singh; Mank, Judith (Ed.)
    Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work. 
    more » « less
  5. Malik, Harmit Singh; Mank, Judith (Ed.)
    In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible. 
    more » « less