The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anderegg, William R (1)
-
Avila, Rodrigo T (1)
-
Batz, Timothy A (1)
-
Damatta, Fábio M (1)
-
Jansen, Steven (1)
-
Kane, Cade N (1)
-
Kerr, Kelly L (1)
-
McAdam, Scott A (1)
-
Trabi, Christophe (1)
-
Trugman, Anna T (1)
-
Zenes, Nicole (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Martinez-Vilalta, Jordi (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martinez-Vilalta, Jordi (Ed.)
Abstract -
Kerr, Kelly L ; Zenes, Nicole ; Trugman, Anna T ; Anderegg, William R ( , Tree Physiology)Martinez-Vilalta, Jordi (Ed.)Abstract Species interactions mediate tree responses to water limitation because competition and/or facilitation alter plant physiology and growth. However, because it is difficult to isolate the effects of plant–plant interactions and water limitation from other environmental factors, the mechanisms underlying tree physiology and growth in coexisting plants under drought are poorly understood. We investigated how species interactions and water limitation impact the physiology and growth of trembling aspen (Populus tremuloides), narrowleaf cottonwood (Populus angustifolia) and ponderosa pine (Pinus ponderosa) seedlings in a controlled environment growth chamber, using aspen as a focal species. Seedlings were grown in pots alone or with a con- or hetero-specific seedling, and were subjected to a water limitation treatment. Growth, water status and physiological traits were measured before, during and after the treatment. Under well-watered conditions, the presence of another seedling affected growth or biomass allocation in all species, but did not impact the physiological traits we measured. Under water limitation, the presence of a competing seedling had a marginal impact on seedling growth and physiological traits in all species. Throughout the study, the magnitude and direction of seedling responses were complex and often species-specific. Our study serves as an important step toward testing how species’ interactions modify physiological responses and growth in well-watered and water-limited periods.more » « less