skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Oh, Eunjin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morin, Pat; Oh, Eunjin (Ed.)
    Motivated by the problem of estimating bottleneck capacities on the Internet, we formulate and study the problem of vantage point selection. We are given a graph G = (V, E) whose edges E have unknown capacity values that are to be discovered. Probes from a vantage point, i.e, a vertex v ∈ V, along shortest paths from v to all other vertices, reveal bottleneck edge capacities along each path. Our goal is to select k vantage points from V that reveal the maximum number of bottleneck edge capacities. We consider both a non-adaptive setting where all k vantage points are selected before any bottleneck capacity is revealed, and an adaptive setting where each vantage point selection instantly reveals bottleneck capacities along all shortest paths starting from that point. In the non-adaptive setting, by considering a relaxed model where edge capacities are drawn from a random permutation (which still leaves the problem of maximizing the expected number of revealed edges NP-hard), we are able to give a 1-1/e approximate algorithm. In the adaptive setting we work with the least permissive model where edge capacities are arbitrarily fixed but unknown. We compare with the best solution for the particular input instance (i.e. by enumerating all choices of k tuples), and provide both lower bounds on instance optimal approximation algorithms and upper bounds for trees and planar graphs. 
    more » « less
    Free, publicly-accessible full text available August 11, 2026
  2. Morin, Pat; Oh, Eunjin (Ed.)
    Let S be a set of n points in ℝ^d, where d ≥ 2 is a constant, and let H₁,H₂,…,H_{m+1} be a sequence of vertical hyperplanes that are sorted by their first coordinates, such that exactly n/m points of S are between any two successive hyperplanes. Let |A(S,m)| be the number of different closest pairs in the {(m+1) choose 2} vertical slabs that are bounded by H_i and H_j, over all 1 ≤ i < j ≤ m+1. We prove tight bounds for the largest possible value of |A(S,m)|, over all point sets of size n, and for all values of 1 ≤ m ≤ n. As a result of these bounds, we obtain, for any constant ε > 0, a data structure of size O(n), such that for any vertical query slab Q, the closest pair in the set Q ∩ S can be reported in O(n^{1/2+ε}) time. Prior to this work, no linear space data structure with sublinear query time was known. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026