Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bogomolov, Sergiy; Parker, David (Ed.)Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ, time bounds α and β, the SRS of φ, Rα,β (φ), is the STL formula ¬φU[0,α]G[0,β)φ, specifying that recovery from a violation of φ occur within time α (recoverability), and subsequently that φ be maintained for duration β (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β (φ) atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach. https://doi.org/10.1007/978-3-031-15839-1_7more » « less
-
Biere, Armin; Parker, David (Ed.)We characterize the class of nondeterministic 𝜔-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata ‘good-for-MDPs’ (GFM). We show that GFM automata are closed under classic simulation as well as under more powerful simulation relations that leverage properties of optimal control strategies for MDPs. This closure enables us to exploit state-space reduction techniques, such as those based on direct and delayed simulation, that guarantee simulation equivalence. We demonstrate the promise of GFM automata by defining a new class of automata with favorable properties—they are Büchi automata with low branching degree obtained through a simple construction—and show that going beyond limit-deterministic automata may significantly benefit reinforcement learning.more » « less
-
Bierre, Amin; Parker, David (Ed.)
An official website of the United States government
