Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Piskac, Ruzica; Voronkov, Andrei (Ed.)Neural networks have become critical components of reactive systems in various do- mains within computer science. Despite their excellent performance, using neural networks entails numerous risks that stem from our lack of ability to understand and reason about their behavior. Due to these risks, various formal methods have been proposed for verify- ing neural networks; but unfortunately, these typically struggle with scalability barriers. Recent attempts have demonstrated that abstraction-refinement approaches could play a significant role in mitigating these limitations; but these approaches can often produce net- works that are so abstract, that they become unsuitable for verification. To deal with this issue, we present CEGARETTE, a novel verification mechanism where both the system and the property are abstracted and refined simultaneously. We observe that this approach allows us to produce abstract networks which are both small and sufficiently accurate, allowing for quick verification times while avoiding a large number of refinement steps. For evaluation purposes, we implemented CEGARETTE as an extension to the recently proposed CEGAR-NN framework. Our results are highly promising, and demonstrate a significant improvement in performance over multiple benchmarks.more » « less
-
Piskac, Ruzica; Whalen, Michael W. (Ed.)The increasing complexity of modern configurable systems makes it critical to improve the level of automation in the process of system configuration. Such automation can also improve the agility of the development cycle, allowing for rapid and automated integration of decoupled workflows. In this paper, we present a new framework for automated configuration of systems representable as state machines. The framework leverages model checking and satisfiability modulo theories (SMT) and can be applied to any application domain representable using SMT formulas. Our approach can also be applied modularly, improving its scalability. Furthermore, we show how optimization can be used to produce configurations that are best according to some metric and also more likely to be understandable to humans. We showcase this framework and its flexibility by using it to configure a CGRA memory tile for various image processing applications.more » « less
-
Piskac, Ruzica; Whalen, Michael W. (Ed.)In recent years, cloud service providers have sold computation in increasingly granular units. Most recently, "serverless" executors run a single executable with restricted network access and for a limited time. The beneft of these restrictions is scale: thousand-way parallelism can be allocated in seconds, and CPU time is billed with sub-second granularity. To exploit these executors, we introduce gg-SAT: an implementation of divide-and-conquer SAT solving. Infrastructurally, gg-SAT departs substantially from previous implementations: rather than handling process or server management itself, gg-SAT builds on the gg framework, allowing computations to be executed on a confgurable backend, including serverless offerings such as AWS Lambda. Our experiments suggest that when run on the same hardware, gg-SAT performs competitively with other D&C solvers, and that the 1000-way parallelism it offers (through AWS Lambda) is useful for some challenging SAT instances.more » « less
An official website of the United States government

Full Text Available