- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Borges, Luís (1)
-
Callan, Jamie (1)
-
Layode, O. (1)
-
Martins, Bruno (1)
-
Rahman, Md M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Potthast, M. (2)
-
Faggioli, G. (1)
-
Ferro, N. (1)
-
Hanbury, A. (1)
-
Hiemstra, D. (1)
-
Moens, MF. (1)
-
Mothe, J. (1)
-
Perego, R. (1)
-
Sebastiani, F. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Faggioli, G.; Ferro, N.; Hanbury, A.; Potthast, M. (Ed.)This paper describes the participation of Morgan_CS in both Concept Detection and Caption Prediction tasks under the ImageCLEFmedical 2022 Caption task. The task required participants to automatically identifying the presence and location of relevant concepts and composing coherent captions for the entirety of an image in a large corpus which is a subset of the extended Radiology Objects in COntext (ROCO) dataset. Our implementation is motivated by using encoder-decoder based sequence-to-sequence model for caption and concept generation using both pre-trained Text and Vision Transformers (ViTs). In addition, the Concept Detection task is also considered as a multi concept labels classification problem where several deep learning architectures with “sigmoid” activation are used to enable multilabel classification with Keras. We have successfully submitted eight runs for the Concept Detection task and four runs for the Caption Prediction task. For the Concept Detection Task, our best model achieved an F1 score of 0.3519 and for the Caption Prediction Task, our best model achieved a BLEU Score of 0.2549 while using a fusion of Transformers.more » « less
-
Borges, Luís; Martins, Bruno; Callan, Jamie (, Lecture notes in computer science)Hiemstra, D.; Moens, MF.; Mothe, J.; Perego, R.; Potthast, M.; Sebastiani, F. (Ed.)Our work aimed at experimentally assessing the benefits of model ensembling within the context of neural methods for passage re-ranking. Starting from relatively standard neural models, we use a previous technique named Fast Geometric Ensembling to generate multiple model instances from particular training schedules, then focusing or attention on different types of approaches for combining the results from the multiple model instances (e.g., averaging the ranking scores, using fusion methods from the IR literature, or using supervised learning-to-rank). Tests with the MS-MARCO dataset show that model ensembling can indeed benefit the ranking quality, particularly with supervised learning-to-rank although also with unsupervised rank aggregation.more » « less
An official website of the United States government

Full Text Available