skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Professor Gregory Hartland"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Professor Gregory Hartland (Ed.)
    An improved optical design for nanosecond diffuse reflectance (DR) spectroscopy is presented. The in-situ analysis of the electron back-reaction and dye regeneration processes in efficient opaque dye-sensitized solar cell devices (DSCs) was scrutinized for the first time using nanosecond DR spectroscopy. The efficient DSC device is based on an opaque TiO2 double-layer film comprising 400 nm light-scattering particles and 20 nm optically transparent particles. Transmission-based laser techniques are not suitable for studying these or other devices by using the opaque morphologies of TiO2 films. However, time-resolved DR flash photolysis enables the exploration of photophysical processes in a broad variety of opaque or highly light-absorbing and light-scattering materials. We experimentally verified the three important components of DR-based spectroscopy: optical configuration, sample condition, and theoretical quantitative optical models. The large optical angle for diffusive light enables efficient light collection and measurement at a relatively low power. We tested the steady-state and time-resolved concentration dependence of the Kubelka−Munk theory for the quantitative analysis of time-resolved results and observed that the dynamics of electron back-reactions are strongly affected by the morphological parameters of the TiO2 films. With a lifetime of 50 μs, the kinetics of electron back-recombination in the device’s photoanode, which is manufactured with 400 nm TiO2 particles and 20 nm TiO2 particles, are 2 orders of magnitude faster than what has been reported to date for 20 nm particles (1 ms). In contrast to electron back-recombination, the dye regeneration process is not influenced by the TiO2 film morphology. 
    more » « less