skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Przytycka, Teresa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Przytycka, Teresa M. (Ed.)
    Emerging ultra-low coverage single-cell DNA sequencing (scDNA-seq) technologies have enabled high resolution evolutionary studies of copy number aberrations (CNAs) within tumors. While these sequencing technologies are well suited for identifying CNAs due to the uniformity of sequencing coverage, the sparsity of coverage poses challenges for the study of single-nucleotide variants (SNVs). In order to maximize the utility of increasingly available ultra-low coverage scDNA-seq data and obtain a comprehensive understanding of tumor evolution, it is important to also analyze the evolution of SNVs from the same set of tumor cells. We presentPhertilizer, a method to infer a clonal tree from ultra-low coverage scDNA-seq data of a tumor. Based on a probabilistic model, our method recursively partitions the data by identifying key evolutionary events in the history of the tumor. We demonstrate the performance ofPhertilizeron simulated data as well as on two real datasets, finding thatPhertilizereffectively utilizes the copy-number signal inherent in the data to more accurately uncover clonal structure and genotypes compared to previous methods. 
    more » « less
  2. Przytycka, Teresa M. (Ed.)
    Copy-number aberrations (CNAs) are genetic alterations that amplify or delete the number of copies of large genomic segments. Although they are ubiquitous in cancer and, thus, a critical area of current cancer research, CNA identification from DNA sequencing data is challenging because it requires partitioning of the genome into complex segments with the same copy-number states that may not be contiguous. Existing segmentation algorithms address these challenges either by leveraging the local information among neighboring genomic regions, or by globally grouping genomic regions that are affected by similar CNAs across the entire genome. However, both approaches have limitations: overclustering in the case of local segmentation, or the omission of clusters corresponding to focal CNAs in the case of global segmentation. Importantly, inaccurate segmentation will lead to inaccurate identification of CNAs. For this reason, most pan-cancer research studies rely on manual procedures of quality control and anomaly correction. To improve copy-number segmentation, we introduce CNAV iz , a web-based tool that enables the user to simultaneously perform local and global segmentation, thus overcoming the limitations of each approach. Using simulated data, we demonstrate that by several metrics, CNAV iz allows the user to obtain more accurate segmentation relative to existing local and global segmentation methods. Moreover, we analyze six bulk DNA sequencing samples from three breast cancer patients. By validating with parallel single-cell DNA sequencing data from the same samples, we show that by using CNAV iz , our user was able to obtain more accurate segmentation and improved accuracy in downstream copy-number calling. 
    more » « less
  3. Przytycka, Teresa (Ed.)
    Abstract Summary We present StochSS Live!, a web-based service for modeling, simulation and analysis of a wide range of mathematical, biological and biochemical systems. Using an epidemiological model of COVID-19, we demonstrate the power of StochSS Live! to enable researchers to quickly develop a deterministic or a discrete stochastic model, infer its parameters and analyze the results. Availability and implementation StochSS Live! is freely available at https://live.stochss.org/ Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less