skip to main content


Search for: All records

Editors contains: "Robles, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robles, A. (Ed.)
    Although various navigation apps are available, people who are blind or have low vision (PVIB) still face challenges to locate store entrances due to missing geospatial information in existing map services. Previously, we have developed a crowdsourcing platform to collect storefront accessibility and localization data to address the above challenges. In this paper, we have significantly improved the efficiency of data collection and user engagement in our new AI-enabled Smart DoorFront platform by designing and developing multiple important features, including a gamified credit ranking system, a volunteer contribution estimator, an AI-based pre-labeling function, and an image gallery feature. For achieving these, we integrate a specially designed deep learning model called MultiCLU into the Smart DoorFront. We also introduce an online machine learning mechanism to iteratively train the MultiCLU model, by using newly labeled storefront accessibility objects and their locations in images. Our new DoorFront platform not only significantly improves the efficiency of storefront accessibility data collection, but optimizes user experience. We have conducted interviews with six adults who are blind to better understand their daily travel challenges and their feedback indicated that the storefront accessibility data collected via the DoorFront platform would be very beneficial for them. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024