skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Russo, Alessandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ricca, Francesco; Russo, Alessandra (Ed.)
    We focus on the problem of inducing logic programs that explain models learned by the support vector machine (SVM) algorithm. The top-down sequential covering inductive logic programming (ILP) algorithms (e.g., FOIL) apply hill-climbing search using heuristics from information theory. A major issue with this class of algorithms is getting stuck in local optima. In our new approach, however, the data-dependent hill-climbing search is replaced with a model-dependent search where a globally optimal SVM model is trained first, then the algorithm looks into support vectors as the most influential data points in the model, and induces a clause that would cover the support vector and points that are most similar to that support vector. Instead of defining a fixed hypothesis search space, our algorithm makes use of SHAP, an example-specific interpreter in explainable AI, to determine a relevant set of features. This approach yields an algorithm that captures the SVM model’s underlying logic and outperforms other ILP algorithms in terms of the number of induced clauses and classification evaluation metrics. 
    more » « less