skip to main content

Search for: All records

Editors contains: "Ryan, Q. X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Frank, B. W. ; Jones D. L. ; Ryan, Q. X. (Ed.)
  2. Frank, B. W. ; Jones, D. L. ; and Ryan, Q. X. (Ed.)
    In this paper, we analyze video recordings of students working on tutorials in Zoom breakout rooms in an upper-division quantum mechanics course. We investigate group behaviors in this virtual environment, including the effects of instructor presence. To this end, we modify the Color Frames coding scheme introduced by Scherr to suit the virtual nature of the interactions. By broadening the frames and allowing for multiple overlapping frames, we are able to describe some group behaviors not otherwise captured. For example, in some instances, students take on an authoritative role in the group, and in other instances, groups engage in overtly casual behavior while nonetheless having on-topic discussions. We observe significant variation in how much time each group spends in each frame, but find that all groups spend some time in all frames. Instructors can be present without dominating or eliminating discussion between students, and their presence need not significantly impact the time students spent in an "informal/friendly'' frame. However, instructor presence significantly reduces time spent working individually. Our findings will support additional research into the dynamics of student discussions during tutorials and aid ongoing development of online tutorials that can, e.g., be assigned for use outside of class.
  3. Frank, B. W. ; Jones, D. L. ; and Ryan, Q. X. (Ed.)
    Significant attention in the PER community has been paid to student cognition and reasoning processes in undergraduate quantum mechanics. Until recently, however, these same topics have remained largely unexplored in the context of emerging interdisciplinary quantum information science (QIS) courses. We conducted exploratory interviews with 22 students in an upper-division quantum computing course at a large R1 university crosslisted in physics and computer science, as well as 6 graduate students in a similar graduate-level QIS course offered in physics. We classify and analyze students' responses to a pair of questions regarding the fundamental differences between classical and quantum computers. We specifically note two key themes of importance to educators: (1) when reasoning about computational power, students often struggled to distinguish between the relative effects of exponential and linear scaling, resulting in students frequently focusing on distinctions that are arguably better understood as analog-digital than classical-quantum, and (2) introducing the thought experiment of analog classical computers was a powerful tool for helping students develop a more expertlike perspective on the differences between classical and quantum computers.