skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Editors contains: "Sato, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sato, Brian (Ed.)
    As biological science rapidly generates new knowledge and novel approaches to address increasingly complex and integrative questions, biology educators face the challenge of teaching the next generation of biologists and citizens the skills and knowledge to enable them to keep pace with a dynamic field. Fundamentally, biology is the science of living systems. Not surprisingly, systems is a theme that pervades national reports on biology education reform. In this essay, we present systems as a unifying paradigm that provides a conceptual framework for all of biology and a way of thinking that connects and integrates concepts with practices. To translate the systems paradigm into concrete outcomes to support instruction and assessment in the classroom, we introduce the biology systems-thinking (BST) framework, which describes four levels of systems-thinking skills: 1) describing a system’s structure and organization, 2) reasoning about relationships within the system, 3) reasoning about the system as a whole, and 4) analyzing how a system interacts with other systems. We conclude with a series of questions aimed at furthering conversations among biologists, biology education researchers, and biology instructors in the hopes of building support for the systems paradigm. 
    more » « less
  2. Sato, Brian (Ed.)
    Sharing personal information can help instructors build relationships with students, and instructors revealing concealable stigmatized identities (CSIs) may be particularly impactful. One CSI is the LGBTQ+ identity, but there has been no research on the student-perceived impact of an instructor revealing this identity. In this exploratory study conducted at an institution in the U.S. Southwest, an instructor revealed that she identifies as LGBTQ+ to her undergraduate biology course in less than 3 seconds. We surveyed students ( n = 475) after 8 weeks to assess whether they remembered this, and if so, how they perceived it affected them. We used regression models to assess whether students with different identities perceived a disproportionate impact of the reveal. Most students perceived the instructor revealing her LGBTQ+ identity positively impacted them; regression results showed LGBTQ+ students and women perceived greater increased sense of belonging and confidence to pursue a science career. Students overwhelmingly agreed that instructors revealing their LGBTQ+ identities to students is appropriate. This study is the first to indicate the perceived impact of an instructor revealing her LGBTQ+ identity to students in the United States and suggests that a brief intervention could positively affect students. 
    more » « less