Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Endrullis, Jörg; Schmitz, Sylvain (Ed.)Graded modal logics generalise standard modal logics via families of modalities indexed by an algebraic structure whose operations mediate between the different modalities. The graded "of-course" modality !_r captures how many times a proposition is used and has an analogous interpretation to the of-course modality from linear logic; the of-course modality from linear logic can be modelled by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed into an adjunction and a "strict action". We give a similar result to Benton, leveraging Fujii et al.’s decomposition, showing that graded modalities can be split into two modalities connecting a graded logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical model, and a natural deduction system which we show is isomorphic to the sequent calculus system. Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an action that adds the grading, further illuminating the shared principles between linear logic and a class of graded modal logics.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Endrullis, Jörg; Schmitz, Sylvain (Ed.)Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning about imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic properties of probabilistic programs. Here we introduce an extension of this framework called approximate GKAT (aGKAT), which equips GKAT with a partially ordered monoid (real numbers) enabling to express satisfaction of (deterministic) properties except with a probability up to a certain bound. This allows to represent in equational reasoning "à la KAT" proofs of probabilistic programs based on the union bound, a technique from basic probability theory. We show how a propositional variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded in our system aGKAT. We then illustrate the use of aGKAT with an example of accuracy analysis from the field of differential privacy.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Endrullis, Jörg; Schmitz, Sylvain (Ed.)We prove that the equational theory of Kleene algebra with commutativity conditions on primitives (or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our results hold even for weaker theories that do not support the induction axioms of Kleene algebra.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
