skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Sharma, Lalit Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sharma, Lalit Kumar (Ed.)
    One of the biggest challenges with species conservation is collecting accurate and efficient information on population sizes, especially from species that are difficult to count. Bats worldwide are declining due to disease, habitat destruction, and climate change, and many species lack reliable population information to guide management decisions. Current approaches for estimating population sizes of bats in densely occupied colonies are time-intensive, may negatively impact the population due to disturbance, and/or have low accuracy. Research-based video tracking options are rarely used by conservation or management agencies for animal counting due to the perceived training and elevated operating costs. In this paper, we present BatCount, a free software program created in direct consultation with end-users designed to automatically count bats emerging from cave roosts (historical populations 20,000–250,000) with a streamlined and user-friendly interface. We report on the software package and provide performance metrics for different recording habitat conditions. Our analysis demonstrates that BatCount is an efficient and reliable option for counting bats in flight, with performance hundreds of times faster than manual counting, and has important implications for range- and species-wide population monitoring. Furthermore, this software can be extended to count any organisms moving across a camera including birds, mammals, fish or insects. 
    more » « less
  2. Sharma, Lalit Kumar (Ed.)
    Climate change in mountain regions has exposed high-elevation species to rapidly changing temperatures. Although climate exposure can be reduced in certain microclimates, the quality of microclimatic refugia might also degrade with climate change. The American pika ( Ochotona princeps ) often inhabits high elevations, and is considered climate-sensitive due to its narrow thermal tolerance and recent extirpations in some warmer portions of its range. Pikas behaviorally thermoregulate by taking refuge in the subsurface microclimates found in taluses and other rocky habitats, where daily thermal fluctuations are attenuated and somewhat decoupled from free-air temperatures. Changes in microclimate might reduce the efficacy of this behavioral thermoregulation. This study compares recent (2009–2021) subsurface temperatures at a long-term pika study site with a rare instance of historical (1963–1964) data from the same location. We also place historical and recent microclimates in context using long-term data on free-air temperatures from the same area. Recent free-air temperatures were often warmer than historical records, and subsurface temperatures exhibited even stronger warming between periods. Temperatures measured in the talus were often dramatically warmer in recent records, especially at the deeper of two subsurface sensor placements in this study. Winter months showed the greatest changes in both talus and free-air temperatures. Differences between historical and recent microclimates were not explained by the precise placement of sensors, as recent temperatures were similar across a wide variety of subsurface placements, and temporal changes in free-air temperatures at the historical study site were also reflected in data from nearby weather stations. Together, these results suggest that subsurface microclimates important for pika thermoregulation have changed over the past few decades, perhaps even faster than observed changes in free-air temperatures. The generality of these results and their potential ramifications for ecosystem processes and services should be explored. 
    more » « less