skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Editors contains: "Sycara K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wilde N.; Alonso-Mora J.; Brown D.; Mattson C.; Sycara K. (Ed.)
    In this paper, we introduce an innovative approach to multi-human robot interaction, leveraging the capabilities of omnicopters. These agile aerial vehicles are poised to revolutionize haptic feedback by offering complex sensations with 6 degrees of freedom (6DoF) movements. Unlike traditional systems, our envisioned method enables haptic rendering without the need for tilt, offering a more intuitive and seamless interaction experience. Furthermore, we propose using omnicopter swarms in human-robot interaction, these omnicopters can collaboratively emulate and render intricate objects in real-time. This swarm-based rendering not only expands the realm of tangible human-robot interactions but also holds potential in diverse applications, from immersive virtual environments to tactile guidance in physical tasks. Our vision outlines a future where robots and humans interact in more tangible and sophisticated ways, pushing the boundaries of current haptic technology. 
    more » « less