skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Vidick, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vidick, Thomas (Ed.)
    Graph homomorphism has been an important research topic since its introduction [14]. Stated in the language of binary relational structures in that paper [14], Lovász proved a fundamental theorem that the graph homomorphism function G 7→ hom(G, H) for 0-1 valued H (as the adjacency matrix of a graph) determines the isomorphism type of H. In the past 50 years various extensions have been proved by Lovász and others [15, 9, 1, 19, 17]. These extend the basic 0-1 case to admit vertex and edge weights; but always with some restrictions such as all vertex weights must be positive. In this paper we prove a general form of this theorem where H can have arbitrary vertex and edge weights. An innovative aspect is that we prove this by a surprisingly simple and unified argument. This bypasses various technical obstacles and unifies and extends all previous known versions of this theorem on graphs. The constructive proof of our theorem can be used to make various complexity dichotomy theorems for graph homomorphism effective, i.e., it provides an algorithm that for any H either outputs a P-time algorithm solving hom(·, H) or a P-time reduction from a canonical #P-hard problem to hom(·, H). 
    more » « less