skip to main content

Search for: All records

Editors contains: "Wang, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Various nucleosynthesis studies have pointed out that the rapid neutron capture r-process elements in very metal-poor (VMP) halo stars might have different origins. It has been known that an r-process can either be obtained in neutron-rich low Ye conditions or in high entropy environments [see e.g. 1–5], an overview over many investigations has appeared recently [6]. In the present article we analyze with statistical methods the observational abundance patterns from trans-Fe elements up to the actinides and come to the conclusion that four to five categories of astrophysical events must have contributed. These include the ejection of Fe and trans-Fe elements Sr, Y, Zr (continuing possibly beyond to slightly higher mass numbers) in category 0 events (hereafter "C0"), Fe and weak r-process contributions (including Eu in moderate to slightly larger but varying amounts) in CI and CII events, strong r-process abundance patterns with no or negligible (in comparison to solar) Fe production in CIIIa and CIIIb events, where category CIIIb shows a tendency for an actinide boost behavior. When comparing these categories with presently existing nucleosynthesis predictions, we suggest to identify them (despite remaining uncertainties) with regular core-collapse supernovae, quark deconfinement supernovae, magneto-rotational supernovae, neutron star mergers, and outflows frommore »black hole accretion tori.« less
  2. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    β − decay lifetimes are essential ingredients for r -process yield calculations. In N≈126 r -process waiting point nuclei first-forbidden and allowed β decays are expected to compete. Recent experiments performed at CERN/ISOLDE showed that 207,208 Hg decay predominantly via first-forbidden decays. In addition, following on a high statistics study of the β + / EC decay of 208 At, it is suggested that the Z>82, N<126 nuclei provide an excellent testing ground for global calculations addressing the competition between first-forbidden and allowed β decays.
  3. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Experimental studies on astrophysical reactions involving radioactive isotopes (RI) often accompany technical challenges. Studies on such nuclear reactions have been conducted at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study, the University of Tokyo. We discuss two cases of astrophysical reaction studies at CRIB; one is for the 7 Be+ n reactions which may affect the primordial 7 Li abundance in the Big-Bang nucleosynthesis, and the other is for the 22 Mg( α , p ) reaction relevantin X-raybursts.
  4. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Nucleosynthesis of iron-group elements in Type Ia supernovae is studied for single-degenerate models with the use of electron-capture rates updated with the new shell-model Hamiltonian in pf -shell. An over-production problem of neutron-rich iron-group isotopes compared with the solar abundances is now found to be suppressed within a factor of about twice for the updated weak rates. Effects of screening on nucleosynthesis are investigated for explosion models of fast deflagration and slow deflagration with delayed detonation. The e-capture rates are reduced by the screening, especially by the screening effects on the ions. The production yields of most neutron-rich isotopes such as 50 Ti, 54 Cr and 58 Fe are found to be suppressed most by the screening. The inclusion of the screening is desirable for precise evaluation of abundances of neutron-rich nuclides.
  5. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    In Type-I X-ray bursts (XRBs), the rapid-proton capture (rp-) process passes through the NiCu and ZnGa cycles before reaching the region above Ge and Se isotopes that hydrogen burning actively powers the XRBs. The sensitivity study performed by Cyburt et al . [1] shows that the 57 Cu(p, γ ) 58 Zn reaction in the NiCu cycles is the fifth most important rp-reaction influencing the burst light curves. Langer et al . [2] precisely measured some low-lying energy levels of 58 Zn to deduce the 57 Cu(p, γ ) 58 Zn reaction rate. Nevertheless, the order of the 1 + 1 and 2 + 3 resonance states that dominate at 0:2 ≲ T (GK) ≲ 0:8 is not confirmed. The 1 + 2 resonance state, which dominates at the XRB sensitive temperature regime 0:8 ≲ T (GK) ≲ 2 was not detected. Using isobaric-multipletmass equation (IMME), we estimate the order of the 1 + 1 and 2 + 3 resonance states and estimate the lower limit of the 1 + 2 resonance energy. We then determine the 57 Cu(p, γ ) 58 Zn reaction rate using the full pf -model space shell model calculations. The new rate is up tomore »a factor of four lower than the Forstner et al . [3] rate recommended by JINA REACLIBv2.2. Using the present 57 Cu(p, γ ) 58 Zn, the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, and 1D implicit hydrodynamic K epler code, we model the thermonuclear XRBs of the clocked burster GS 1826–24. We find that the new rates regulate the reaction flow in the NiCu cycles and strongly influence the burst-ash composition. The 59 Cu(p, γ ) 56 Ni and 59 Cu(p, α ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction. They strongly diminish the impact of the nuclear reaction flow that bypasses the 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on burst light curve.« less
  6. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Up to now, more than 62 of the 115 X-ray sources of low-mass-X-ray binaries have been identified as photospheric radius expansion (PRE) bursters [1]. Galloway and collaborators expect more PRE bursters in their near future analysis [2]. Although more than half of the discovered X-ray sources are PRE bursters, the bursting mechanism of PRE burster is still not adequately understood. This is because of the complicated hydrodynamics and variable accretion rates. An example is the accretion-powered millisecond pulsar SAX J1808.4–3658 [3, 4] that powered up the brightest Type-I X-ray burst (XRB) recorded by NICER in recent history [5]. The first 1D multi-zone model of SAX J1808.4–3658 was recently constructed [6, 7]. The pioneering model offers a first concurrent and direct comparison with the observed light curves, fluences, and recurrence times. With the three observables, a comparison between theory and observations could be more sensitive than the previous studies of the clocked burster and post-processing models. We perform a sensitivity study on ( α ,p), ( α , γ ), (p, α ), and (p, γ ) reactions with a total up to ~1,500 reactions. Our current result indicates that the observables are more sensitive to the competition between the reactionsmore »involving alpha-capture, e.g., the 22 Mg( α , p) and 22 Mg(p, γ ) reactions competing at the 22 Mg branch point [8].« less
  7. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Neutron capture reactions are the main contributors to the synthesis of the heavy elements through the s-process. Together with 13 C( α , n) 16 O, which has recently been measured by the LUNA collaboration in an energy region inside the Gamow peak, 22 Ne( α , n) 25 Mg is the other main neutron source in stars. Its cross section is mostly unknown in the relevant stellar energy (450 keV < E cm < 750 keV), where only upper limits from direct experiments and highly uncertain estimates from indirect sources exist. The ERC project SHADES (UniNa/INFN) aims to provide for the first time direct cross section data in this region and to reduce the uncertainties of higher energy resonance parameters. High sensitivity measurements will be performed with the new LUNA-MV accelerator at the INFN-LNGS laboratory in Italy: the energy sensitivity of the SHADES hybrid neutron detector, together with the low background environment of the LNGS and the high beam current of the new accelerator promises to improve the sensitivity by over 2 orders of magnitude over the state of the art, allowing to finally probe the unexplored low-energy cross section. Here we present an overview of the project andmore »first results on the setup characterization.« less
  8. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Underground Nuclear Astrophysics Experiment in China (JUNA) has been commissioned by taking the advantage of the ultra-low background in Jinping underground lab. High current mA level 400 KV accelerator with an ECR source and BGO detectors were commissioned. JUNA studies directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. In the first quarter of 2021, JUNA performed the direct measurements of 25 Mg(p, γ ) 26 Al, 19 F(p, α ) 16 O, 13 C( α ,n) 16 O and 12 C( α , γ ) 16 O near the Gamow window. The experimental results reflect the potential of JUNA with higher statistics, precision and sensitivity of the data. The preliminary results of JUNA experiment and future plan are given.
  9. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    The 19 F( p , αγ ) 16 O reaction is of crucial importance for Galactic 19 F abundances and CNO cycle loss in first generation Population III stars. Due to its extremely small cross sections, the 19 F( p , αγ ) 16 O reaction has not been measured in the low energy part of the Gamow window(70-200 keV). As a day-one campaign, the experiment was performed under the extremely low cosmicray-induced background environment of the China JinPing Underground Laboratory(CJPL), one of the deepest underground laboratories in the world. The γ -ray yields were measured over E c . m . =72.4–344 keV, covering the full Gamow window for the first time. The direct experimental data will help people to expound the fluorine over-abundances, energy generation, as well as heavy-element nuclosynthesis scenario in asymptotic giant branch (AGB) stars, with the astrophysical model on the firm ground.
  10. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    The neutron activation method is well-suited to investigate neutron-capture cross sections relevant for the main s-process component. Neutrons can be produced via the 7 Li(p,n) reaction with proton energies of 1912 keV at e.g. Van de Graaff accelerators, which results in a quasi-Maxwellian spectrum of neutrons corresponding to a temperature of k B T = 25 keV. However, the weak s-process takes place in massive stars at temperatures between 25 and 90 keV. Simulations using the PINO code [2] suggest that a Maxwellian spectrum for higher energies, e.g. k B T = 90 keV, can be approximated by a linear combination of different neutron spectra. To validate the PINO code at proton energies E p ≠ 1912 keV, neutron time-of-flight measurements were carried out at the PTB Ion Accelerator Facility (PIAF) at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany.