skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Wild, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Benoit, Anne; Kaplan, Haim; Wild, Sebastian; Herman, Grzegorz (Ed.)
    Free, publicly-accessible full text available September 15, 2026
  2. Mailler, Cécile; Wild, Sebastian (Ed.)
    Galled trees appear in problems concerning admixture, horizontal gene transfer, hybridization, and recombination. Building on a recursive enumerative construction, we study the asymptotic behavior of the number of rooted binary unlabeled (normal) galled trees as the number of leaves n increases, maintaining a fixed number of galls g. We find that the exponential growth with n of the number of rooted binary unlabeled normal galled trees with g galls has the same value irrespective of the value of g ≥ 0. The subexponential growth, however, depends on g; it follows c_g n^{2g-3/2}, where c_g is a constant dependent on g. Although for each g, the exponential growth is approximately 2.4833ⁿ, summing across all g, the exponential growth is instead approximated by the much larger 4.8230ⁿ. 
    more » « less
  3. Benoit, Anne; Kaplan, Haim; Wild, Sebastian; Herman, Grzegorz (Ed.)
    {"Abstract":["The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings.\r\n- Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21].\r\n- Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges."]} 
    more » « less