skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Wojtan, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Umetani, N.; Wojtan, C.; Vouga, E. (Ed.)
    Most non-photorealistic rendering (NPR) methods for line drawing synthesis operate on a static shape. They are not tailored to process animated 3D models due to extensive per-frame parameter tuning needed to achieve the intended look and natural transition. This paper introduces a framework for interactive line drawing synthesis from animated 3D models based on a learned style space for drawing representation and interpolation. We refer to style as the relationship between stroke placement in a line drawing and its corresponding geometric properties. Starting from a given sequence of an animated 3D character, a user creates drawings for a set of keyframes. Our system embeds the raster drawings into a latent style space after they are disentangled from the underlying geometry. By traversing the latent space, our system enables a smooth transition between the input keyframes. The user may also edit, add, or remove the keyframes interactively, similar to a typical keyframe-based workflow. We implement our system with deep neural networks trained on synthetic line drawings produced by a combination of NPR methods. Our drawing-specific supervision and optimization-based embedding mechanism allow generalization from NPR line drawings to user-created drawings during run time. Experiments show that our approach generates high-quality line drawing animations while allowing interactive control of the drawing style across frames. 
    more » « less