skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Yin, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yin, George (Ed.)
    We consider a discrete time stochastic Markovian control problem under model uncertainty. Such uncertainty not only comes from the fact that the true probability law of the underlying stochastic process is unknown, but the parametric family of probability distributions which the true law belongs to is also unknown. We propose a nonparametric adaptive robust control methodology to deal with such problem where the relevant system random noise is, for simplicity, assumed to be i.i.d. and onedimensional. Our approach hinges on the following building concepts: first, using the adaptive robust paradigm to incorporate online learning and uncertainty reduction into the robust control problem; second, learning the unknown probability law through the empirical distribution, and representing uncertainty reduction in terms of a sequence of Wasserstein balls around the empirical distribution; third, using Lagrangian duality to convert the optimization over Wasserstein balls to a scalar optimization problem, and adopting a machine learning technique to achieve efficient computation of the optimal control. We illustrate our methodology by considering a utility maximization problem. Numerical comparisons show that the nonparametric adaptive robust control approach is preferable to the traditional robust frameworks 
    more » « less