skip to main content


Search for: All records

Editors contains: "Yongjin J. Zhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yongjin J. Zhou (Ed.)
    Abstract

    A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeastYarrowia lipolyticaand extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high‐value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two‐phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three‐phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kLa). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward‐pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton‐type) provided advantageous oil phase homogeneity and similar estimatedkLavalues with reduced power. These results show good agreement with the experimental mixing andkLadata.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025