skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "anon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. anon (Ed.)
    We consider the question of monitoring polarization purity, that is, measuring deviations from orthogonalityδτandδϵof an ostensibly orthogonal polarization basis with a reference channel of ellipticityϵand tiltτ. A simple result was recently derived for a phase-sensitive receiver observing unpolarized radiation [IEEE Trans. Geosci. Remote Sens.62,2003610(2024)10.1109/TGRS.2024.3380531]: withρ(1)denoting the Pearson complex correlation coefficient between channelcomplex fields, it states that ∓cos⁡(2ϵ)δτ±iδϵ≈ρ(1)whenδτ,ϵ≪1. However, phase-sensitive (in-phase and quadrature) data are seldom available at optical frequencies. To that end, here we generalize the result by deriving a new equation for the polarization “alignment” error:cos2(2ϵ)δτ2ϵ2≈ρ(2), whereρ(2)is the intensity cross-correlation coefficient. Only the measurement of the(real) intensitycross-correlation coefficient is needed when observing unpolarized light. For the special case of a linearly polarized basis, the tilt error is simplyδτ≈ρ(2), and for the circular basis case, with ellipticity deviationδϵfrom circular helicityπ/4 (the reference channel of opposite helicity),δϵ≈ρ(2). These results provide simple means to gauge the quality of polarimeters and depolarizers. 
    more » « less