skip to main content


Search for: All records

Editors contains: "de Vries, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. de Vries, E. (Ed.)
  2. de Vries, E. (Ed.)
    This symposium addresses dance as a site for STEM learning. We present papers from five research projects that each sought to engage youth in embodied STEM learning using dance, exploring the power of creative embodied experiences and the body’s potential as an expressive tool and resource for learning. We show how dance activities expanded access to STEM and supported sense-making; how dancer and dance-making practices were leveraged to support computational thinking, modeling, and inquiry; and how moving bodies in creative ways helped to generate new insights by allowing for new perspectives. Across our work, we seek to understand the multiple, rich learning opportunities that emerge from working across the arts and sciences, dance and STEM. Together our research shows that attending to opportunities for STEM engagement and learning through dance practices can broaden access to learning and engagement in STEM for all. 
    more » « less
  3. de Vries, E. (Ed.)
    This study investigates how the design of hybrid mathematics and computational activities influences the ways in which students leverage ideas from both disciplinary topics. We examine two design cycles of a computer programming summer camp for middle school students which foreground computational thinking and then mathematics alongside computational thinking respectively. We review the rationale for each design iteration, the trends we saw in students’ engagement, and the implications for students’ reasoning. Findings of this study demonstrate the importance of thinking critically about the boundary objects that are included in design that support students to make bridges between multiple disciplinary practices. 
    more » « less
  4. de Vries, E. (Ed.)
    Modeling is generally recognized as the core disciplinary practice of science. Through examinations of rich learning environments which expand the boundaries of modeling and the practices connected to it, researchers are broadening what modeling means in disciplinary settings. This interactive session brings together a diverse spectrum of scholars to share the practices they have used to expand modeling, how they were used in their curriculum, and the impact they had on learning. This session will serve as a rich opportunity for discussion to help advance the state of the field around what counts as modeling and the role it can play in learning. 
    more » « less
  5. de Vries, E. (Ed.)
    Computer programming has been conceptualized as an expressive medium, but little is known about how to best support students in exercising agency and engagement in coding tasks. This paper draws on data from a five-day summer camp for middle school students that integrated computer science and movement. We focus on an activity in which students created choreography and modeled it in the programming environment NetLogo. The task was designed with the goal of creating opportunities for students to exercise agency and expressivity while coding. We analyze the extent to which incompatibilities, or moments of mismatch between what is possible in the dance versus NetLogo environments, shaped students’ agency and exploration. Our findings suggest that designing with incompatibilities positioned students with agency over their models and supported their own expressive goals. 
    more » « less
  6. de Vries, E. (Ed.)
  7. de Vries, E. (Ed.)
  8. de Vries, E. (Ed.)
    This symposium explores the empirical relationship between two theoretically distinct uses of the construct of positioning in the learning sciences. To do so, it brings together different studies that examine teaching and learning in STEM classrooms that incorporate both embodied and social aspects of positioning. These examples contribute to answering the question: How does simultaneously considering students’ and teachers’ embodied movements and social positioning offer new insights into studies of STEM classroom learning? Together, these studies show how different types of positioning are tightly related to one another, suggesting that more research is needed to understand the complex relationships between the physical, social, and epistemic positions in research and design of learning environments. 
    more » « less
  9. de Vries, E. (Ed.)
    We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinements to our curriculum and scaffolding of students to further support the integrated learning of science and CT. 
    more » « less
  10. de Vries, E. (Ed.)
    We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinements to our curriculum and scaffolding of students to further support the integrated learning of science and CT. 
    more » « less