skip to main content


Search for: All records

Editors contains: "Atomi, Haruyuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomi, Haruyuki (Ed.)
    Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens. 
    more » « less
  2. Atomi, Haruyuki (Ed.)
    ABSTRACT Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in “ Candidatus Endoriftia persephonae,” the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila . We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 μmol · h −1 ) or high (180 to 276 μmol · h −1 ) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO 2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ 13 C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila , δ 13 C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from “omics” studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO 2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO 2 -fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated. 
    more » « less
  3. Atomi, Haruyuki (Ed.)
    ABSTRACT Altering metabolic flux at a key branch point in metabolism has commonly been accomplished through gene knockouts or by modulating gene expression. An alternative approach to direct metabolic flux preferentially toward a product is decreasing the activity of a key enzyme through protein engineering. In Escherichia coli , pyruvate can accumulate from glucose when carbon flux through the pyruvate dehydrogenase complex is suppressed. Based on this principle, 16 chromosomally expressed AceE variants were constructed in E. coli C and compared for growth rate and pyruvate accumulation using glucose as the sole carbon source. To prevent conversion of pyruvate to other products, the strains also contained deletions in two nonessential pathways: lactate dehydrogenase ( ldhA ) and pyruvate oxidase ( poxB ). The effect of deleting phosphoenolpyruvate synthase ( ppsA ) on pyruvate assimilation was also examined. The best pyruvate-accumulating strains were examined in controlled batch and continuous processes. In a nitrogen-limited chemostat process at steady-state growth rates of 0.15 to 0.28 h −1 , an engineered strain expressing the AceE[H106V] variant accumulated pyruvate at a yield of 0.59 to 0.66 g pyruvate/g glucose with a specific productivity of 0.78 to 0.92 g pyruvate/g cells·h. These results provide proof of concept that pyruvate dehydrogenase complex variants can effectively shift carbon flux away from central carbon metabolism to allow pyruvate accumulation. This approach can potentially be applied to other key enzymes in metabolism to direct carbon toward a biochemical product. IMPORTANCE Microbial production of biochemicals from renewable resources has become an efficient and cost-effective alternative to traditional chemical synthesis methods. Metabolic engineering tools are important for optimizing a process to perform at an economically feasible level. This study describes an additional tool to modify central metabolism and direct metabolic flux to a product. We have shown that variants of the pyruvate dehydrogenase complex can direct metabolic flux away from cell growth to increase pyruvate production in Escherichia coli . This approach could be paired with existing strategies to optimize metabolism and create industrially relevant and economically feasible processes. 
    more » « less
  4. Atomi, Haruyuki (Ed.)
    ABSTRACT Agrobacterium tumefaciens GW4 is a heterotrophic arsenite-oxidizing bacterium with a high resistance to arsenic toxicity. It is now a model organism for studying the processes of arsenic detoxification and utilization. Previously, we demonstrated that under low-phosphate conditions, arsenate [As(V)] could enhance bacterial growth and be incorporated into biomolecules, including lipids. While the basic microbial As(V) resistance mechanisms have been characterized, global metabolic responses under low phosphate remain largely unknown. In the present work, the impacts of As(V) and low phosphate on intracellular metabolite and lipid profiles of GW4 were quantified using liquid chromatography-mass spectroscopy (LC-MS) in combination with transcriptional assays and the analysis of intracellular ATP and NADH levels. Metabolite profiling revealed that oxidative stress response pathways were altered and suggested an increase in DNA repair. Changes in metabolite levels in the tricarboxylic acid (TCA) cycle along with increased ATP are consistent with As(V)-enhanced growth of A. tumefaciens GW4. Lipidomics analysis revealed that most glycerophospholipids decreased in abundance when As(V) was available. However, several glycerolipid classes increased, an outcome that is consistent with maximizing growth via a phosphate-sparing phenotype. Differentially regulated lipids included phosphotidylcholine and lysophospholipids, which have not been previously reported in A. tumefaciens . The metabolites and lipids identified in this study deepen our understanding of the interplay between phosphate and arsenate on chemical and metabolic levels. IMPORTANCE Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited. Arsenate and phosphate are chemically similar, and this behavior is believed to represent a phosphate-sparing phenotype in which arsenate is used in place of phosphate in certain biomolecules. The research presented here uses a global approach to track metabolic changes in an environmentally relevant bacterium during exposure to arsenate when phosphate is low. Our findings are relevant for understanding the environmental fate of arsenic as well as how human-associated microbiomes respond to this common toxin. 
    more » « less
  5. Atomi, Haruyuki (Ed.)
    ABSTRACT Isoprene is a valuable petrochemical used for a wide variety of consumer goods, such as adhesives and synthetic rubber. We were able to achieve a high yield of renewable isoprene by taking advantage of the naturally high-flux mevalonate lipid synthesis pathway in anaerobic methane-producing archaea (methanogens). Our study illustrates that by genetically manipulating Methanosarcina species methanogens, it is possible to create organisms that grow by producing the hemiterpene isoprene. Mass balance measurements show that engineered methanogens direct up to 4% of total carbon flux to isoprene, demonstrating that methanogens produce higher isoprene yields than engineered yeast, bacteria, or cyanobacteria, and from inexpensive feedstocks. Expression of isoprene synthase resulted in increased biomass and changes in gene expression that indicate that isoprene synthesis depletes membrane precursors and redirects electron flux, enabling isoprene to be a major metabolic product. Our results demonstrate that methanogens are a promising engineering chassis for renewable isoprene synthesis. IMPORTANCE A significant barrier to implementing renewable chemical technologies is high production costs relative to those for petroleum-derived products. Existing technologies using engineered organisms have difficulty competing with petroleum-derived chemicals due to the cost of feedstocks (such as glucose), product extraction, and purification. The hemiterpene monomer isoprene is one such chemical that cannot currently be produced using cost-competitive renewable biotechnologies. To reduce the cost of renewable isoprene, we have engineered methanogens to synthesize it from inexpensive feedstocks such as methane, methanol, acetate, and carbon dioxide. The “isoprenogen” strains we developed have potential to be used for industrial production of inexpensive renewable isoprene. 
    more » « less
  6. Atomi, Haruyuki (Ed.)
    ABSTRACT CRISPR-based systems are emerging as the premier method to manipulate many cellular processes. In this study, a simple and efficient CRISPR interference (CRISPRi) system for targeted gene repression in archaea was developed. The Methanosarcina acetivorans CRISPR-Cas9 system was repurposed by replacing Cas9 with the catalytically dead Cas9 (dCas9) to generate a CRISPRi-dCas9 system for targeted gene repression. To test the utility of the system, genes involved in nitrogen (N 2 ) fixation were targeted for dCas9-mediated repression. First, the nif operon ( nifHI 1 I 2 DKEN ) that encodes molybdenum nitrogenase was targeted by separate guide RNAs (gRNAs), one targeting the promoter and the other targeting nifD . Remarkably, growth of M. acetivorans with N 2 was abolished by dCas9-mediated repression of the nif operon with each gRNA. The abundance of nif transcripts was >90% reduced in both strains expressing the gRNAs, and NifD was not detected in cell lysate. Next, we targeted NifB, which is required for nitrogenase cofactor biogenesis. Expression of a gRNA targeting the coding sequence of NifB decreased nifB transcript abundance >85% and impaired but did not abolish growth of M. acetivorans with N 2 . Finally, to ascertain the ability to study gene regulation using CRISPRi-dCas9, nrpR1 , encoding a subunit of the repressor of the nif operon, was targeted. The nrpR1 repression strain grew normally with N 2 but had increased nif operon transcript abundance, consistent with NrpR1 acting as a repressor. These results highlight the utility of the system, whereby a single gRNA when expressed with dCas9 can block transcription of targeted genes and operons in M. acetivorans . IMPORTANCE Genetic tools are needed to understand and manipulate the biology of archaea, which serve critical roles in the biosphere. Methanogenic archaea (methanogens) are essential for the biological production of methane, an intermediate in the global carbon cycle, an important greenhouse gas, and a biofuel. The CRISPRi-dCas9 system in the model methanogen Methanosarcina acetivorans is, to our knowledge, the first Cas9-based CRISPR interference system in archaea. Results demonstrate that the system is remarkably efficient in targeted gene repression and provide new insight into nitrogen fixation by methanogens, the only archaea with nitrogenase. Overall, the CRISPRi-dCas9 system provides a simple, yet powerful, genetic tool to control the expression of target genes and operons in methanogens. 
    more » « less
  7. Atomi, Haruyuki (Ed.)
    Proteins that oxidize extracellular substrates in Gram-positive bacteria are poorly understood. Ferrimicrobium acidiphilum is an actinobacterium that respires aerobically on extracellular ferrous ions at pH 1.5. In situ absorbance measurements were conducted on turbid suspensions of intact Fm. acidiphilum using an integrating cavity absorption meter designed for that purpose. Initial velocity kinetic studies monitored the appearance of product ferric ions in the presence of catalytic quantities of cells. Cell-catalyzed iron oxidation obeyed the Michaelis-Menten equation with values for KM and Vmax of 71 µM and 0.29 fmol/min/cell, respectively. Limited-turnover kinetic studies were conducted with higher concentrations of cells to detect and monitor changes in the absorbance properties of cellular redox proteins when the cells were exposed to limited quantities of soluble reduced iron. A single a-type cytochrome with reduced absorbance peaks at 448 and 605 nm was the only redox-active chromophore that was visible as the cells respired aerobically on iron. The reduced cytochrome 605 exhibited mathematical and correlational properties that were consistent with the hypothesis that oxidation of the cytochrome constituted the rate-limiting step in the aerobic respiratory process with a turnover number of 35 ± 2 s-1. Genomic and proteomic analyses showed that Fm. acidiphilum could and did express only two a-type heme copper terminal oxidases. Cytochrome 605 was associated with the terminal oxidase gene that is located between nucleotides 31090 and 33039, inclusive, in the annotated circular genome of this bacterium. 
    more » « less