skip to main content


Search for: All records

Editors contains: "Stewart, Frank J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stewart, Frank J. (Ed.)
    ABSTRACT

    Enterobacter hormaecheiDVZ29 was isolated from a sediment trap incubated in an129I plume at the Hanford Site (Washington State, USA). A whole genome sequencing of the strain resulted in 32 contigs and revealed that the genome is 4.90 Mb, with a G + C content of 55.61%.

     
    more » « less
    Free, publicly-accessible full text available November 16, 2024
  2. Stewart, Frank J. (Ed.)
    ABSTRACT A nearly complete genome of an uncultured Mollicutes sp. was obtained from the metagenome of the gut of Limacina rangii (open-ocean snail), an important grazer and prey for higher trophic animals along the rapidly warming region of the western Antarctic Peninsula. 
    more » « less
  3. Stewart, Frank J. (Ed.)
    ABSTRACT Flavobacterium covae is one of four Flavobacterium spp. that cause columnaris disease in teleost fish. Here, we report the draft genomes of two isolates, LSU-066-04 and LV-359-01, and their predicted virulence factors. 
    more » « less
  4. Stewart, Frank J. (Ed.)
    ABSTRACT Here, we report the draft genome sequence of Nereida sp. strain MMG025, isolated from the surface of giant kelp and assembled and analyzed by undergraduate students participating in a marine microbial genomics course. A genomic comparison suggests that MMG025 is a novel species, providing a resource for future microbiology and biotechnology investigations. 
    more » « less
  5. Stewart, Frank J. (Ed.)
    ABSTRACT The complete genome sequences of two chemoautotrophic nitrite-oxidizing bacteria of the genus Nitrospina are reported. Nitrospina gracilis strain Nb-211 was isolated from the Atlantic Ocean, and Nitrospina sp. strain Nb-3 was isolated from the Pacific Ocean. We report two highly similar ~3.07-Mbp genome sequences that differ by the presence of ferric iron chelator (siderophore) biosynthesis genes. 
    more » « less
  6. Stewart, Frank J. (Ed.)
    ABSTRACT Cluster 5 Synechococcus species are widely acknowledged for their broad distribution and biogeochemical importance. In particular, subcluster 5.2 strains inhabit freshwater, estuarine, and marine environments but are understudied, compared to other subclusters. Here, we present the genome for Synechococcus sp. strain LA31, a strain that was recently isolated from Narragansett Bay, Rhode Island, USA. 
    more » « less
  7. Stewart, Frank J. (Ed.)
    ABSTRACT We reported the complete genome sequence of a member of the pathogenic Curtobacterium genus. The sample includes a circular 3,955-kb chromosome, a 164-kb megaplasmid and a 42-kb plasmid. This strain was isolated from surface-sterilized alfalfa seeds. 
    more » « less
  8. Stewart, Frank J. (Ed.)
    ABSTRACT Salegentibacter sp. strain BDJ18 was isolated from a plankton-associated seawater sample from the northeast Atlantic Ocean. We report its draft genome assembly, which includes genes potentially important for microbial interactions in the marine environment. 
    more » « less
  9. Stewart, Frank J. (Ed.)
    ABSTRACT Raphidiopsis raciborskii and Planktothrix agardhii are filamentous, potentially toxin-producing cyanobacteria that form nuisance blooms in fresh waters. Here, we report high-quality metagenome-assembled genome sequences of R. raciborskii and P. agardhii collected from a bloom in Kissena Lake, New York. 
    more » « less
  10. Stewart, Frank J. (Ed.)
    ABSTRACT We report the first complete genome of Microcystis aeruginosa from North America. A harmful bloom that occurred in the Caloosahatchee River in 2018 led to a state of emergency declaration in Florida. Although strain FD4 was isolated from this toxic bloom, the genome did not have a microcystin biosynthetic gene cluster. 
    more » « less