Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first version of the Ocean Circulation and Carbon Cycling (OC3) working group database, of oxygen and carbon stable isotope ratios from benthic foraminifera in deep ocean sediment cores from the Last Glacial Maximum (LGM, 23-19 ky) to the Holocene (<10 ky) with a particular focus on the early last deglaciation (19-15 ky BP). It includes 287 globally distributed coring sites, with metadata, isotopic and chronostratigraphic information, and age models. A quality check was performed for all data and age models, and sites with at least millennial resolution were preferred. Deep water mass structure as well as differences between the early deglaciation and LGM are captured by the data, even though its coverage is still sparse in many regions. We find high correlations among time series calculated with different age models at sites that allow such analysis. The database provides a useful dynamical approach to map physical and biogeochemical changes of the ocean throughout the last deglaciation.more » « less
-
Abstract Decades of observations show that the world's oceans have been losing oxygen, with far‐reaching consequences for ecosystems and biogeochemical cycling. To reconstruct oxygenation beyond the limited scope of instrumental records, proxy records are needed, such as sedimentary δ15N. We combine two δ15N records from the Santa Barbara Basin (SBB), a 24‐year‐long, biweekly sediment trap time series, and a 114‐year, high‐resolution sediment core together spanning the years 1892–2017. These records allow for the examination of δ15N variability on seasonal to centennial timescales. Seasonal variability in SBB δ15N is consistent in timing with the poleward advection of a high δ15N signal from the Eastern Tropical North Pacific in the summer and fall. Strong El Niño events result in variable δ15N signatures, reflective of local rainfall, and neither the Pacific Decadal Oscillation nor North Pacific Gyre Oscillation impose strong controls on bulk sedimentary δ15N. Seasonal and interannual variability in sediment trap δ13Corgis consistent with local productivity as a driver; however, this signal is not retained in the sediment core. The time series from the sediment trap and core show that bulk sedimentary δ15N in SBB has now exceeded that measured for the past 2,000 years. We hypothesize that the change in δ15N reflects the increasing influence of denitrified waters from the Eastern Tropical North Pacific and ongoing deoxygenation of the Eastern Pacific. When juxtaposed with other regional δ15N records our results further suggest that SBB is uniquely situated to record long‐term change in the Eastern Tropical North Pacific.more » « less
-
The prevailing hypothesis for lower atmospheric carbon dioxide (CO 2 ) concentrations during glacial periods is an increased efficiency of the ocean’s biological pump. However, tests of this and other hypotheses have been hampered by the difficulty to accurately quantify ocean carbon components. Here, we use an observationally constrained earth system model to precisely quantify these components and the role that different processes play in simulated glacial-interglacial CO 2 variations. We find that air-sea disequilibrium greatly amplifies the effects of cooler temperatures and iron fertilization on glacial ocean carbon storage even as the efficiency of the soft-tissue biological pump decreases. These two processes, which have previously been regarded as minor, explain most of our simulated glacial CO 2 drawdown, while ocean circulation and sea ice extent, hitherto considered dominant, emerge as relatively small contributors.more » « less
An official website of the United States government
