Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 12, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
Maresca, Julia A (Ed.)ABSTRACT Draft genomes were generated for three filamentous toxin-producing cyanobacterial strains cultivated from aquatic sources in Ohio sequenced by NovaSeq S4. Here, we report the classification and genome statistics ofPlanktothrix rubescensPR221, PR222, and PR223.more » « lessFree, publicly-accessible full text available September 9, 2025
-
Stedman, Kenneth M (Ed.)ABSTRACT Here, we report on the raw and coassembled metatranscriptomes of 39 Lake Erie surface (1.0 m) water samples collected over a 2-day diel period encompassing episodic weather and bloom events. Preliminary taxonomic annotations and read mappings revealed thatMicrocystisspp. accounted for up to ~47% of the transcriptionally active community.more » « lessFree, publicly-accessible full text available November 12, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
Algae, an important foundation of aquatic ecosystems, can become a nuisance or harmful when it grows in excess. Many government agencies have a role in monitoring, responding to, and confirming a harmful algal bloom (HAB). HAB scientists have important information to share, however, given the complexities of HABs, which often involve decoupled drivers from observed impacts, presents challenges to outreach and engagement. Understanding key audience information needs can help scientists prioritize key science communication and engagement opportunities to maximize the impact of such efforts. Scientists may need additional science communication training or support for scientist-community partnerships. This will be evermore important into the future with the likely range expansion of HABs due to climate change.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract TheMicrocystismobilome is a well-known but understudied component of this bloom-forming cyanobacterium. Through genomic and transcriptomic comparisons, we found five families of transposases that altered the expression of genes in the well-studied toxigenic type-strain,Microcystis aeruginosaPCC 7086, and a non-toxigenic genetic mutant,Microcystis aeruginosaPCC 7806 ΔmcyB. Since its creation in 1997, the ΔmcyBstrain has been used in comparative physiology studies against the wildtype strain by research labs throughout the world. Some differences in gene expression between what were thought to be otherwise genetically identical strains have appeared due to insertion events in both intra- and intergenic regions. In our ΔmcyBisolate, a sulfate transporter gene cluster (sbp-cysTWA) showed differential expression from the wildtype, which may have been caused by the insertion of a miniature inverted repeat transposable element (MITE) in the sulfate-binding protein gene (sbp). Differences in growth in sulfate-limited media also were also observed between the two isolates. This paper highlights howMicrocystisstrains continue to “evolve” in lab conditions and illustrates the importance of insertion sequences / transposable elements in shaping genomic and physiological differences betweenMicrocystisstrains thought otherwise identical. This study forces the necessity of knowing the complete genetic background of isolates in comparative physiological experiments, to facilitate the correct conclusions (and caveats) from experiments.more » « lessFree, publicly-accessible full text available December 1, 2025