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ABSTRACT

Effluent organic matter (EfOM), contained in treated municipal wastewater, differs in
composition from naturally-occurring dissolved organic matter (DOM). The presence of EfOM may thus
alter the photochemical production of reactive intermediates in rivers that receive measurable
contributions of treated municipal wastewater. Quantum yield coefficients for excited triplet-state OM
(COM*) and apparent quantum yields for singlet oxygen ('0,) were measured for both whole water
samples and OM isolated by solid phase extraction from whole water samples collected upstream and
downstream of municipal wastewater treatment plant discharges in three rivers receiving differing
effluent contributions: Hockanum R., CT (22% (v/v) effluent flow), E. Fork Little Miami R., OH (11%)),
and Pomperaug R., CT (6%). While only small differences in production of these reactive intermediates
were observed between upstream and downstream whole water samples collected from the same river,
yields of *OM* and 'O, varied by 30-50 % between the rivers. Apparent quantum yields of 'O, followed
similar trends to those of *OM*, consistent with *OM* as a precursor to 'O, formation. Higher *OM*
reactivity was observed for whole water samples than for OM isolates of the same water, suggesting
differential recoveries of photo-reactive moieties by solid phase extraction. *OM* and 'O, yields
increased with increasing E»/E; ratio (Ajssnm divided by Asgsnm) and decreased with increasing electron
donating capacities of the samples, thus exhibiting trends also observed for reference humic and fulvic
acid isolates. Mixing experiments with EfOM and DOM isolates showed evidence of quenching of triplet
DOM by EfOM when measured yields were compared to theoretical yields. Together, the results suggest
that effluent contributions of up to 25% (v/v) to river systems have a negligible influence on
photochemical production of *OM* and 'O, apparently because of quenching of triplet DOM by EfOM.
Furthermore, the results highlight the importance of whole water studies for quantifying in situ

photoreactivity, particularly for *OM*.
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INTRODUCTION

Urbanization increases contributions of treated municipal wastewater effluent to streams and
rivers. Almost one quarter of permitted wastewater discharges now occur into rivers and streams with
dilution factors of ten or less." Municipal wastewater discharges are a source of synthetic organic
micropollutants (e.g., pharmaceuticals and many personal care products) that can adversely impact
downstream ecosystem health.”> Downstream concentrations of micropollutants may be attenuated by
biological degradation or photochemical reactions.”® In the latter case, aquatic dissolved organic matter
(DOM) plays a dual role by slowing direct photolysis reactions’ while simultaneously generating
photochemically-produced reactive intermediates that can enhance micropollutant degradation through
secondary reactions.”'* These photochemically-produced reactive intermediates include triplet-state
excited organic matter COM?*), singlet oxygen ('O,), and hydroxyl radicals (OH*) that are both
produced"”"® and scavenged by DOM, yielding low steady state concentrations in natural waters.'* >
Photoproduction of reactive intermediates may be altered by large fractional contributions of treated
wastewater, which introduces effluent organic matter (EfOM) that differs in chemical composition from

23,24

upstream and in-stream sources. To date, the photoreactivity of treated wastewater EfOM has not

been studied extensively”*®

and how it may impact the downstream fate of wastewater micropollutants
is poorly understood.'**’

The composition of EfOM differs from that of naturally-occurring DOM in fluvial systems in
ways that are expected to affect aquatic photochemistry. The photoreactivity of organic matter is often
assessed in relation to its optical properties, including specific ultraviolet absorbance (e.g., at 254 nm,
SUVA,s,) and slope characteristics of the absorbance spectrum.”?**' EfOM, in comparison to DOM,

oy s 24,32-34
exhibits lower SUV A,s, values***?

and therefore absorbs, or attenuates, less light on a per carbon basis
in the water column than DOM. The ratio of DOM absorbance at 254 nm to 365 nm (E,/E; ratio) has
been related to the quantum yields of photochemically-produced reactive intermediates.”° For example,

the apparent quantum yield of 'O, is positively correlated with E,/E; values of isolated DOM,

International Humic Substance Society (IHSS) reference materials, and whole water samples.***° This
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relationship has been extended to isolated EfOM; however, EfOM apparent quantum yields of 'O, are
somewhat higher than those for IHSS reference materials® consistent with higher E,/E; values typically
observed for EfOM relative to DOM.** Higher 'O, yields from EfOM suggest that quantum yields of
*OM* are also greater for EfOM than for DOM because *OM* is thought to be the precursor for 'O,
formation.*>*® *OM* yields of EfOM have not been reported previously but can be inferred to be higher
than those of DOM from enhanced triplet state reactivity and degradation of sulfamethoxazole in treated
municipal wastewater relative to lake water.'™*’ Together, these observations suggest that wastewater
treatment plant discharges may considerably influence the formation of photochemically-produced
reactive intermediates in effluent-receiving rivers, with the actual influence depending upon the relative
mass contributions of EfOM and DOM to the river, as well as the relative specific absorbances of the OM
from these two sources.

An important consideration in studies of DOM and EfOM photochemistry is the extent to which
the sampling and isolation of the OM may alter its composition and influence subsequent photochemical
properties. Although isolation techniques often have highly variable overall recoveries, the isolated OM
still contains a significant fraction of chromophoric, photoreactive components.®™ In contrast, isolation
techniques may not capture all of the photoreactive components of EfOM. Isolation of EfOM by solid
phase extraction typically results in overall recoveries that are on the low end of the range reported for
DOM. For example, XAD-8 resin extraction only captures 20 to 40% of the total EfOM on a carbon
basis.********* Importantly, lower molecular weight organic matter (< 1 kDa, membrane separation) that
may be less effectively captured by resin isolation shows greater apparent 'O, quantum yields than larger
molecular weight fractions™ (> 10 kDa, membrane separation) that could be more effectively captured by
resin isolation. More recently, the availability of wide-polarity spectrum solid phase extraction materials
such as styrene divinylbenzene (trademarked as PPL) have been shown to capture a much larger fraction
of the organic matter pool (> 50%),*"** but application to EfOM has not been investigated extensively.

Although many past studies of DOM photoreactivity have been conducted using isolates, it is not clear
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whether the photoreactivity of solutions prepared with isolates is truly representative of whole water
samples,** particularly those with effluent contributions.

The purpose of this study was to investigate the influence of EfOM discharges on *OM* and 'O,
photoproduction in stream and river systems receiving moderate amounts of treated municipal wastewater
effluent, as typical for the Northeast and Midwest U.S. We used whole water samples and solutions
prepared with OM isolated from water samples by solid phase extraction. The water samples were
collected up- and downstream of the treated wastewater outfalls. In addition, we used solutions prepared
with EfOM isolated from the wastewater treatment plant. This approach was designed to examine any
bias that might result from the use of DOM isolates, relative to unaltered DOM in whole water samples.
To our knowledge, *OM* has not been studied previously in wastewater effluent or EfOM isolates,
despite it being an important photooxidant for micropollutants from many substance classes.”''>*74347
Furthermore, we sought to examine whether apparent quantum yields of 'O, and triplet OM vary in
similar ways with OM source in order to verify the assumption that triplet OM is the precursor to 'O,
and to examine whether probes for the two species provide consistent information on the production of
triplet state photochemistry. Finally, we evaluated the relationships of the respective quantum yields to
OM properties, including E,/E; ratios and OM isolate electron-donating and accepting capacities, to

assess whether previously reported relationships for DOM also applied to EfOM and natural waters

receiving treated wastewater effluent discharges.

MATERIALS AND METHODS
Sample Collection and Preparation

Three wastewater treatment plant (WWTP) sites with different amounts of municipal effluent
contributions were examined: (i) Hockanum River (Vernon, CT), 22% effluent by volume at the
downstream sampling site; (ii) East Fork Little (EFL) Miami River (Batavia, OH), 11 volume % effluent,
and (iii) Pomperaug River (Southbury, CT), 6 volume % effluent. The volumetric fraction of effluent

discharged to each river was determined from boron dilution ratios.” Each site receives wastewater
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primarily from residential sources with minor inputs from commercial businesses. All of the plants
employ conventional activated sludge treatments with some variations in operation. The Hockanum R.
plant (4 million gallons per day, MGD) has secondary treatment with the addition of powdered activated
carbon to the activated sludge tanks (PACT® process) and does not have advanced nitrogen removal.
The EFL Miami R. plant (3.2 MGD) is a conventional secondary activated sludge treatment plant and also
has no advanced nitrogen removal. The Pomperaug R. plant (0.4 MGD) has no primary treatment and
oxygen delivery to the activated sludge tanks is pulsed to allow denitrification to occur during periods of
anaerobic operation. Effluent from the Pomperaug R. plant is discharged to two oxidation ponds in series
before being discharged into the river. Prior characterization of EfOM isolated from the two CT WWTP
in 2010 and 2011 showed only small differences in their bulk characteristics, despite differing plant
operating conditions.**

To assess the impact of effluent contributions on the photochemical generation of reactive species
in the rivers, whole water samples were collected at each site in summer 2013 from two river locations,
the first upstream of the WWTP outfall and the second downstream where the effluent plume was well-
mixed across the river, based on boron and conductivity measurements. Aliquots of these samples were
filtered through 0.45 um PTFE membrane filters (Whatman) and used for whole water experiments. An
additional 250 mL of filtered whole water was used for small-scale organic matter isolation. Separate
large-scale organic matter isolation of DOM and EfOM was undertaken for paired upstream and effluent
samples (each 20 L), respectively, collected in summer 2012 from the Hockanum R., EFL Miami R. and
in summer 2013, from the Pomperaug R. As detailed in the Supporting Information, isolates were
obtained by solid phase extraction using PPL stationary phases (styrene divinylbenzene), eluted with
methanol and evaporated to dryness.”’ Small-scale isolates were immediately dissolved in buffer
solution, as described below, while large-scale isolates were dissolved in high purity water and freeze-
dried. We note that similarities in yields of triplet organic matter and singlet oxygen species for both the
small and large-scale 2013 OM isolates from the Pomperaug R. (Table S1) strongly suggests that the

scale at which DOM was isolated did not affect its photoreactivity.
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Photochemistry Experiments

Photochemistry experiments were conducted in two different reactors located at the University of
Connecticut and the University of Mary Washington (see SI for details). Both reactors were configured
so that the majority of photochemically-active radiation reaching the samples was centered around 365
nm. The intensity of the radiation reaching the samples was determined by p-nitroanisole/pyridine
actinometry.” Light intensities were typically about 2.6 x 10° Es L™ s™ at Connecticut and 2.4 x 10” Es
L' s at Mary Washington, and sample quantum yields measurements of split samples with both reactors
were in good agreement (Figure S2).

Quantum yields were determined from degradation of probe compounds spiked to the samples
from aqueous stock solutions. Probe compounds were 2.4,6-trimethylphenol (TMP, 5 uM initial
concentration) for *OM**° and furfuryl alcohol (FFA, 25 uM initial concentration) for 'O,.”" Individual
probes were spiked directly into filtered whole water samples under natural pH conditions (6.8 — 7.5,
Table 1). Samples of OM isolates were prepared by diluting stock solutions (see SI) with 10 mM
phosphate buffer at the desired pH (pH 8 for DOM* experiments and pH 6.9 for 'O, experiments) for
consistency with previous studies.'***”° The final dissolved organic carbon (DOC) concentrations in
experimental solutions are given in Table 1 and were quantified by high temperature oxidation (see SI).
For comparison, nine solutions were prepared from International Humic Substance Society reference
materials (see SI for complete list; all at 5 mgc L) in 10 mM phosphate buffer for both *DOM* and 'O,
experiments. Changes in probe concentrations over time were measured by HPLC using isocratic elution
with a C-18 column and UV absorbance detection (see Table S2 for operating conditions). The loss of
the probe was used to determine quantum yield coefficients for *OM* (f7,,») and apparent quantum yields
for 'O, (®,0,) following standard approaches (see SI for calculation details). Quenching experiments
with isopropanol were conducted with whole water samples to confirm that 2,4,6-trimethylphenol loss

was dominated by reaction with *OM*. Less than approximately 10% quenching was observed indicating
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that there was either a small contribution to TMP reactivity by OHe, or slight quenching of *OM* by

isopropanol®® (Figure S3).

Optical Analyses

Absorbance spectra were collected from 200 to 550 nm in 1-cm quartz cuvettes on a double beam
UV/Vis spectrophotometer (Agilent Cary 50) using a 1 nm slit. Blank corrections were applied by
subtracting high purity H,O absorbance spectra from whole water samples, and buffer solution spectra
from isolate solutions. E,/E; ratios were obtained by dividing the absorbance at 254 nm by the
absorbance at 365 nm™ and specific absorbance (SUVA,s,) values (L mge' m™) were calculated by
dividing the absorbance at 254 nm by the DOC concentration.”* OM fluorescence spectra were measured
(Cary, Eclipse, Agilent) using the procedures of McKnight et al.” to construct excitation-emission
matrices (EEMs), as detailed in the SI. Fluorescence indices were calculated for excitation at 370 nm

from the ratio of the emission intensity at 450 nm to that at 500 nm.>

DOM Electron Donating and Accepting Capacities

The electron donating and accepting capacities (EDC and EAC) of large-scale OM isolates
collected in 2012 were determined following the method of Aeschbacher et al.,®*" in an anoxic glove box
by mediated electrochemical oxidation and reduction, respectively. Measurements were made under the
same conditions as reported previously for reference organic matter samples.”® EAC and EDC values of
seven IHSS reference materials were included from previous work® for comparison with the OM isolates

used in this study. Details on the electrochemical measurements are reported in the SI.

RESULTS AND DISCUSSION
Influence of EfOM on Whole Water Optical Properties
The EfOM inputs at each site can be gauged by comparing DOC concentrations of the water

above and below the WWTP location (Table 1). Whole water samples from below the WWTP outfalls
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had DOC levels that were not significantly different from samples taken upstream of the treatment plants
(£ 0.2 mg/L). This observation suggests that EfOM concentrations in the treated effluent at the time of
sampling (measurements not obtained) were comparable to the DOM concentrations reported for
upstream river samples, a trend we have observed in previous sampling rounds. Thus, at the time that
samples were collected, effluent contributions by volume, as calculated from boron dilution ratios, are
also indicative of the fractional EfOM mass contribution to the overall organic matter concentrations
downstream of the WWTPs.

We examined the optical properties of whole river water samples collected upstream and
downstream of the WWTPs to assess potential changes due to EfOM contributions. Based on the known
properties of isolated EfOM relative to DOM, differences in the optical properties of the water above and
below the WWTP could be anticipated. These differences include decreases in SUVA,s4 and increases in
E,/E; and fluorescence index values.”***** In the Hockanum River, SUV A,s, decreased and E,/E;
increased and hence, changed as expected for EfOM contributions to the optical properties (Table 1).
Furthermore, excitation-emission matrices (EEMs) of water collected downstream of the WWTP outfall
on the Hockanum R. had a humic ‘C’ peak that aligned with the ‘C’ peak measured in the effluent, but not
with the ‘C’ peak of the upstream water where emission was observed at longer wavelengths (Figure S5),
also indicating effluent contributions to the optical properties of downstream water. Natural variations in
SUVA,s4 and E,/E; values for the Hockanum R. across sampling dates in July 2013 and May (12 % v/v
effluent) and September 2014 (24 % v/v effluent) were greater than analytical uncertainty (Table S3); in
contrast for each sampling date, similar trends (lower SUV A,s4, higher E,/E;) were observed between
whole water from downstream and upstream locations (Table S3). For the other two rivers, no significant
differences were observed between the optical properties of the whole water samples collected upstream
and downstream of the WWTPs (Table 1).

In contrast to the whole waters, OM isolated from upstream and downstream of the WWTP
outfalls showed clear differences in optical properties. Isolates downstream of the WWTP discharges in

the Hockanum R. and EFL. Miami R. showed lower SUV A,s4 and higher fluorescence index values,
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compared to the respective OM isolates from upstream of the WWTP (Table 1). These observations
suggest that different subcomponents of DOC were isolated by solid phase extraction at the upstream and
downstream locations: the optical properties of the downstream isolates suggest that these had larger
contributions of EfOM — which has comparatively low SUV A,s4 and high fluorescence index values —

than its mass contribution to the OM in the whole water sample.

Quantum Yield Measurements

For the OM isolates, we first determined the yields of *0OM* and 'O, formation as a function of
DOC concentration using a dilution series to ensure that the measured results were not biased by potential
self-quenching of reactive intermediate production by the organic matter.”'*®" For EfOM isolates, a
strong inhibition of TMP oxidation was observed with increasing DOC: as DOC increased from 3 to 25
mgc L™, frup decreased by 50-60% (Figure 1; B1,B2). In stark contrast, DOM isolated from upstream of
the WWTP outfalls showed little variations in f7,,» with DOC (Figure 1; A1, A2). To our knowledge, this
is the first observation of a self-quenching effect of EfOM on *EfOM#* induced oxidation, and this
inhibition occurs at much lower DOC concentrations than reported for reference materials.”' The cause of
the strong inhibiting effect of the EfOM, as compared to the DOM, remains unidentified. Two possible
scenarios could cause a decrease in f7,p with increasing EfOM. There could be direct self-quenching of
*EfOM* by ground state EFOM. This explanation requires that 'O, is produced by photoexcitation of
different OM species than are responsible for TMP oxidation given that we observed a much smaller
relative decrease in @, than in f7,» over the same DOC range (Figure S6). The ®,q, result is consistent
with prior reports of negligible 'O, quenching by DOM isolates.***"*> However, the discrepant trends
between @, and f7,,p are difficult to reconcile with recent evidence that strongly ties TMP oxidation to
triplet states whose lifetimes are controlled by O, and that are responsible for 'O, production.”® An
alternative explanation to self-quenching is inhibition of TMP oxidation via interference by EfOM in

secondary reactions of the TMP phenoxyl radical that lead to overall TMP loss. Possible interferences

10
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include reduction of the TMP radical by EfOM,’**** or EfOM scavenging of superoxide, a potentially

61,65 -1 .
> We chose 5 mgc L™ as our working

important intermediate in the TMP oxidation mechanism.
concentration for subsequent experiments with isolates because most of the whole water samples had
similar DOC concentrations (Table 1), despite the fact that slight quenching effects were observed at this
concentration level.

Quantum Yields in Whole Water Samples. With one exception, effluent discharges caused
little changes in f7,p and @, in the river waters as indicated by similar downstream and upstream values
of these parameters (Figure 2; A1, A2). The only exception was the Pomperaug R., which showed a
decrease of about 50% in fr,p, from samples collected upstream to samples collected downstream of the
WWTP (Figure 2; Al). Given the small contribution of EfOM to the overall DOC in this river (Table 1),
it seems unlikely that the change in f7,,» was due to inhibition of *OM* by EfOM (6% mass contribution).
Of the three river systems, the EFL Miami R. had the highest f73,p and ®;¢, values, 30 to 50% larger than
the corresponding values of samples from the two CT sites (Figure 2; A1, A2). The fryp and @, values
of the samples collected both upstream and downstream of the WWTP are within ranges reported
previously for natural water samples.”>***® Overall, our results suggest that modest EfOM
contributions to river systems are unlikely to impact the downstream production of °DOM* and '0,.

Quantum Yields for Organic Matter Isolates. In this work, we also compared the formation of
*OM* and 'O, between whole water samples and solutions prepared with organic matter isolates obtained
from aliquots of the same water. Quantum yields are commonly measured using isolated DOM due to its
stability and the overall convenience of this approach.* Solutions prepared from paired OM isolates
collected upstream and downstream of each WWTP showed little differences in f7,,» and @0, values
(Figure 2), as was the case for whole water samples. Notable differences were observed in f7,,» values
between whole waters and their respective OM isolate solutions, with smaller f7,p values of isolate
solutions than of corresponding whole waters (Figure 2; A1 vs B1). DOC concentrations were closely
matched between the samples (Table 1) to minimize possible DOC-dependent inhibitory effects. In

contrast, we did not observe lower yields for 'O, formation in isolate samples than in the corresponding
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whole waters. Rather, @0, values for OM isolates were slightly higher (Hockanum R.) or comparable
(EFL Miami R., Pomperaug R.) to those of the corresponding whole water samples (Figure 2; A2 vs B2).
The finding, that f7,,» was lower in isolates than whole waters while @, was similar, contrasts with the
expected result of similar trends in these parameters. Such an expectation is based on recent results
suggesting that the same pool of “DOM* is believed to contribute to both 'O, formation and TMP
oxidation.>*® If this is true, then the difference in f7),» and @,q, trends between the isolates and whole
waters cannot be explained by incomplete recovery of triplet precursors in the isolation procedure. An
alternative explanation is that species capable of oxidizing TMP were present in the whole water but not
the isolates. We can rule out 'O, or OHe as possible TMP oxidizers, given that ®,q, values for OM
isolates were larger than, or similar to, those of the whole waters (Figure 2; A2, B2) and that control
experiments with whole water samples showed that f7,» values decreased only slightly when adding
isopropanol as an OHe quencher (Figure S3). A final explanation is that there are higher concentrations
of OM species capable of inhibiting TMP oxidation in the isolate solutions than in the whole waters.”**
While the cause for lower frp values in OM isolates than whole water OM samples remains unidentified,
the observed differences highlight that one needs to be cautious when using results from experiments
conducted with solid phase extraction-isolated OM to predict OM photoreactivity in unaltered whole
waters. Furthermore, it is possible that the transformation rates of compounds with complex overall
oxidation mechanisms, including TMP, are altered by components in the whole water samples that are not
present in solutions prepared from OM isolates (e.g., unrecovered fractions of OM or other possible
oxidants).

Simulated Mixing Scenarios. We examined apparent quantum yields for solutions prepared
with mixtures of isolated EfOM and DOM from upstream of the respective WWTP to assess how
different sources of organic matter may affect *°OM* and 'O, formation for volumetric mixing ratios of
effluent and river waters other than those occurring at our field sites (Figure 3). Comparison of isolated
EfOM and upstream DOM from the same river showed greater f7,,» and ®,o, for EfOM than DOM in the

Hockanum R., consistent with differences previously reported in the literature.'®* Clear increases in frup

12



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

and ®,¢, values with increasing EfOM addition were observed for DOM from the Hockanum R. when the
total DOC was kept constant at 5 mge L™ (Figure 3; A1, A2). Here, mass contributions of isolated EfOM
of 50% or larger resulted in higher f7,,p» values than for the isolated DOM (Figure 3; Al). Importantly,
samples in which EfOM constituted 25% of the DOC (Figure 3; A1) mimic the OM composition of the
Hockanum R. downstream of the WWTP when whole waters were sampled. For this case, similar f7,p
values were obtained for the EFOM/DOM isolate mixture and for the pure DOM isolate (Figure 3; A1),
consistent with the similar values observed for f7,p between OM isolates and whole water samples
obtained upstream and downstream of the Hockanum R. WWTP (Figure 2; A1, B1), despite the much
higher photoreactivity of EfOM compared to DOM from this location. The @4, values were slightly
higher in the simulated isolate mixture with 25% EfOM as compared to the isolated DOM (Figure 3; A2),
which is further consistent with the differences seen with the upstream and downstream OM isolates
(Figure 2; A2 and B2). For the EFL Miami R., f7;» and @0, values for the EfOM isolate were much
closer to those of the upstream DOM isolate. As a consequence, no clear changes in either f7,p or ®10,
were observed with increasing contributions of EfOM to mixtures of OM isolates (Figure 3; Bl and B2).
Pomperaug R. EfOM and DOM isolate f3,» values (130.8 + 30.8 M™'; 48.6 + 3.8 M, respectively) and
Do, values (5.0 + 0.8 %; 3 £ 0.3 %, respectively) showed higher photoreactivity of EfOM; however,
mixing experiments were not conducted because of the low effluent inputs to the Pomperaug R.

As discussed in detail below, the photochemistry observed in EfOM and DOM isolate mixtures
does not follow patterns expected for conservative mixing. This suggests that EfFOM quenching of DOM
photoreactivity may explain the observed lack of an effect of WWTP effluent on f7,» and @0, in our
whole water experiments. Ultimately, the extent to which OM from a given source contributes to the
observed quantum yields in an OM mixture depends upon both the photoreactivity of the individual OM
components and the fraction of light absorbed by the individual components. Unfortunately, the available
field data (i.e., measured volumetric and DOC mass mixing ratios of effluent with river water) do not
include absorption spectra of the WWTP effluent, so it is not possible to calculate the expected apparent
quantum yields in the whole water samples downstream of the WWTP outfall. In contrast, the
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photoreactivity of EfOM and DOM isolate mixtures can be estimated based on the optical characteristics
of the pure EfOM and DOM isolates (Figure 3). The apparent quantum yield, @ ,,,, of a mixture can be
calculated from the ratio of the overall production of species i to the overall rate of light absorption of the

sample by assuming no interactions of the two photoreactive components (i.e., conservative mixing):

q)_ _ (1_10—«1D0612)¢i'1+(1_10—o<2D0C22)¢i’2 1
Lapp — (1_10—(o<1D0C1+ oczDOCZ)z) ( )

where ®@;; and ®;, are the apparent quantum yield of i for the individual components 1 and 2, o, and o,
are the specific absorption coefficients of the two waters (L mgc"' cm™), DOC, and DOC, are the OM
concentrations of components 1 and 2 (mgc L™), and z is the optical path length (cm). Calculated f7,» and
@, values for the Hockanum R. are shown in Figure 3 using specific absorption coefficients obtained at
365 nm of 0.0029 and 0.0048 L mg"' cm™, respectively, for EfFOM and DOM isolates. Calculated f7,,»
and ®@,q, values were always larger than measured values for the isolate mixtures (Figure 3; A1, A2),
indicating that conservative mixing did not hold. Given that absorbance values of the EFOM:DOM
isolate mixtures were consistent with predicted values, the lower than predicted f7,» and @,¢, values
suggest that EfOM quenched triplets of DOM in the mixtures. For the EFL Miami R., EfOM and DOM
isolates had similar f7,,p and ®,¢, values (Figure 3; B1, B2) (and similar specific absorbances at 365 nm;
0.0072 L mgc"' L™ for EfFOM and 0.0078 L mgc" L™ for DOM) such that the different mixtures were
expected to show comparable photoreactivities. Nonetheless, the mixture of 25/75 EfOM and DOM
isolates for this river — which most closely matches the water downstream of the WWTP outfall — had a
lower fryp value than the pure DOM isolate (Fig. 3, B1), indicating the possibility that there could be
EfOM quenching of DOM triplets in the downstream whole water. Together, the comparison of
measured and calculated apparent quantum yields for OM mixtures suggests that the lack of differences in
upstream and downstream *DOM* and 'O, production in whole water samples may be attributed to
quenching of triplet state DOM by EfOM, particularly in the case of the Hockanum R. that received the

largest OM mass contributions from treated municipal wastewater.
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Correlation of Quantum Yields with E,/E; Ratios

25,29,30,67,69
To expand on recent reports™ " 7

and to provide additional comparisons between EfOM and
DOM photochemical reactivity, we examined trends between optical properties (E,/E;) and
photoreactivity for whole waters and organic matter isolates. A positive correlation between @, and

: : 25,29,30,67,69
E,/E; for organic matter samples was reported previously* >~

and attributed to the efficiency of
*DOM* formation from OM precursor moieties. It is hypothesized that intermolecular complexes
between electron-donating and accepting moieties in OM result in long-wave absorption (low E,/E;) that
is inefficient at producing triplet state photochemistry.®” Although correlations between f7,» and E»/E;
ratios have not been examined in the literature, a positive correlation should exist because of the fact that
10, is produced by SDOM*, Indeed, both f7,,» and @,¢, correlated positively with E,/E; for our complete
sample set (Figure 4). Previously published values® of @, for effluent whole water samples and E,/E;
ratios also were within the bounds of our correlation (Figure 4, ‘x”). Furthermore, all the samples
examined here (whole water, OM isolates, and EfOM/DOM mixtures) showed trends of f7,p and @0,
with E,/E; that were similar to the ones observed for reference fulvic and humic acids (Figure 4).
Notably, despite the differences in absolute values of f7,p for whole water samples and their
corresponding DOM isolates, f7,p for both sample types showed similar relationships to E,/E;. The
similar trends in f7,,p and @0, with E,/E; for isolated OM and whole water samples — both parameters
increasing by a factor of approximately 10 over the same E,/E; range (Figure 4) — reveal a subset of
*OM* and 'O, precursors that were simultaneously isolated by solid phase extraction and likely have a
high degree of overlap in their reactivities.**® Our results corroborate previous reports>>***° that
proposed that E,/E; may be a simple parameter to estimate apparent quantum yields of *DOM* and 'O,
(and hence, production rates and steady-state reactive species concentrations) in cases that photochemical
determinations are not feasible or impossible. We note a caveat in cases when DOM samples undergo

photooxidation for which destruction of sensitizing chromophores increases E,/E; but decreases fTMp67;
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however, this should be more relevant for open water bodies because OM in rivers is less subject to

photooxidation due to shorter residence times.

OM Redox Properties and Photochemistry

To extend our knowledge of how photochemical reactivity is linked to chemical composition of
EfOM and DOM, we also explored relationships between quantum yields and electron-donating and
accepting capacities (EDC and EAC) of large-scale EfOM and DOM isolates. DOM substructures

suspected to be involved in photoreactivity (phenols and quinones)®”

are also thought to be active in
electron transfer.”®” Recently, quantum yields of 'O, have been shown to correlate negatively to EDC
for several OM samples undergoing photooxidation.”” Such a relationship was also observed here
between EDC and both f7,» and @, for isolated EfOM and DOM, and a similar trend was observed with
reference fulvic and humic acids (Figure 5). These trends are consistent with the current model for the
structural basis of DOM photochemistry, i.e., that electron donating moieties participate in charge transfer
complexes® " and that the formation of *DOM?* is impaired in DOM that has a high abundance of these
complexes. We also note that neither f7,,» nor @0, showed a correlation with EAC (results not shown),
which is consistent with a report by Sharpless et al.,"” who argued that a weak relationship of these
properties to EAC indicates only a minor role for quinones in *DOM?* photochemistry of aquatic DOM.®’
Collectively, these findings suggest that photoreactivity in OM isolated by solid phase extraction

correlates negatively with the concentration of redox active substructures and further suggest that

aromatic ketones, rather than quinones, are primary triplet sensitizers in these OM isolates.

Environmental Implications
When placed in the context of treated municipal wastewater discharge scenarios, our findings
suggest that effluent may have a smaller influence on downstream photochemistry than previously

1.2

anticipated. Mostafa et al.”> and Dong et al.*® showed EfOM to have greater quantum yields of 'O, and
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OH?e than for reference fulvic and humic materials. If our f73p- and ®;0,-E,/E; ratio relationships are
indicative, there is likely overlap between the photoreactivity of EfOM and that of DOM from natural
waters. Values of E,/E; for EfOM are not widely reported; literature values, including our study, of E,/E;
ratios for EfOM range from 4 to 8 (n = 11, 7 WWTP)**** with most values between 4.8 and 5.7. EfOM
characterized by the lower range of E,/E; ratios (< 5) may have similar photoreactivity as receiving water
DOM that we, and others,zg’3 % have found to have greater E,/E; ratios than some commonly studied
reference fulvic and humic materials. According to Eq. 1, the maximum influence of EfOM discharges
on downstream apparent quantum yields depends on the relative values of fryp and ®,o, of the EfOM and
DOM, their fractional contribution to the total DOC contribution in the mixture and the relative
magnitude of the EfOM and DOM absorption coeffieicnts, which are fixed for a particular combination of
OM sources. However, as shown above, conservative mixing estimates of downstream apparent quantum
yields are complicated by what appears to be quenching of triplet states by EfOM, which reduces the
effective EfOM contribution to overall photochemical reactivity. Typical effluent DOC concentrations
range from 5 to 20 mge L. For low DOC effluents, effects on downstream photoreactivity will likely
only occur for conditions of both high mass contributions (volumetric discharge) and high EfOM E,/E;
ratios (indicative of high triplet photoreactivity). However, even under these conditions, it is possible that
EfOM self-quenching will greatly suppress EfOM photoreactivity. Relationships, such as shown in
Figure 4, do suggest promise for using mixture E,/E; ratios to estimate photoreactivity provided that they
are constructed under a representative DOC concentration (Figure S7). Studies including a broader array
of ecosystems should be undertaken to validate the predictive ability of this approach and to assess
whether the trends in apparent quantum yields reported here are, or are not, ecosystem dependent.®’
Furthermore, our results suggest that the use of TMP as a probe can lead to *OM* quantum yields
that are higher in whole water than for samples prepared with OM isolates from the same water samples.

Additional study is warranted to evaluate whether isolated DOM (by XAD 8 or other solid phase
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extraction methods) should be used in *OM* reactivity studies and the extent to which the choice of probe

. 14,44.64
compound may influence the results.'***
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445  Table 1. Water quality and optical properties of whole waters and solutions prepared with OM

446  isolates (small-scale) collected in July 2013. Parameters for large-scale OM isolates are italicized.

Fluores-
[DOC]*  SUVA,s,® cence
Sample pH (mgL") (Lmgs'm") EJ/E  Index*
Hockanum River (22% (v/v) effluent flow)
Whole water upstream 6.8 4.5 5.5 4.1 1.5
Whole water downstream 7.5 4.5 5.1 44 1.4
OM isolate upstream 8.0/6.9° 4.0 4.4 4.4 1.7
OM isolate downstream 8.0/6.9 5.0 2.7 4.9 2.3
2012 DOM isolate upstream 8.0/6.9 5.0 2.6 5.3 1.2
2012 EfOM isolate 8.0/6.9 5.0 2.0 7.2 1.9
EFL Miami River (11% (v/v) effluent flow)
Whole water upstream 7.2 6.2 2.9 5.2 1.3
Whole water downstream 7.1 6.5 2.8 52 1.5
OM isolate upstream 8.0/6.9 3.0 34 5.8 1.8
OM isolate downstream 8.0/6.9 5.0 2.0 5.2 2.1
2012 DOM isolate upstream 8.0/6.9 5.0 3.4 5.0 1.1
2012 EfOM isolate 8.0/6.9 5.0 2.5 4.6 1.4
Pomperaug River (6% (v/v) effluent flow)
Whole water upstream 7.4 2.4 3.6 43 1.2
Whole water downstream 7.1 2.8 3.9 43 1.2
OM isolate upstream 8.0/6.9 5.8 3.5 5.2 1.3
OM isolate downstream 8.0/6.9 5.7 3.4 5.1 1.4
2013 DOM isolate upstream 8.0/6.9 5.0 1.6 4.3 1.8
2013 EfOM isolate 8.0/6.9 5.0 0.8 6.0 2.2
2012 DOM isolate upstream 8.0/6.9 5.0 1.3 4.7 1.9
2011 DOM isolate upstream 8.0/6.9 5.0 1.8 3.9 1.5

447  *DOC (+ 0.2 mg L) for isolates is the prepared concentration in photochemistry experiments, ° SUV A,s,
448  (£0.006 L mgc'm™), “E2/E3 (+ 0.07), ¢ Fluorescence index ( 0.07), °10 mM phosphate buffer pH for

449  ’DOM* experiments/ pH for 'O, experiments.
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Figure 1. Influence of dissolved organic carbon (DOC) concentration on triplet quantum yield
coefficients (f7y» (M™)) for large-scale OM isolates of Hockanum R. (A1) dissolved organic matter
(DOM) and (B1) effluent organic matter (EfOM) and EFL Miami R. (A2) DOM and (B2) EfOM, all

collected in 2012.
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Figure 2. Triplet quantum yield coefficients (f,» (M) and 'O, apparent quantum yields (@0,

(%)) for 2013 (A1 & A2) whole water samples and (B1 & B2) OM isolates collected in 2013 at river
locations upstream (white bar) and downstream (grey bar) of the WWTP discharges, where Hock =

Hockanum R., Miami = EFL Miami R. and Pomp = Pomperaug R.
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Figure 3. Triplet quantum yield coefficients (f;» (M™)) and 'O, apparent quantum yields (@0,

(%)) for mixtures of large-scale dissolved organic matter (DOM) and effluent organic matter
(EfOM) isolates collected in 2012 from (Al & A2) the Hockanum R and (B1 & B2) the EFL Miami

R. Calculated yields assuming conservative mixing (Eq. 1) are shown for the Hockanum R. (o).
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Figure 4. Trends in sample (A) triplet quantum yield coefficient (f7,,» (M™")) and (B) 'O, apparent

quantum yields (@0, (%)) with DOM optical characteristics and comparison with International

Humic Substance Society (IHSS) reference materials: © IHSS; 0 small/large-scale OM isolates from

upstream of the WWTP; m small-scale OM isolates from downstream of the WWTP; e large-scale

EfOM isolates; O EfOM:DOM isolate mixtures; A whole water from upstream of the WWTP; A

whole water from downstream of the WWTP. Previously reported values® (x) are shown in B.
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473

474  Figure 5. Relationship between (A) triplet quantum yield coefficients (f7)» (M™)) and (B) 'O,
475  apparent quantum yields (@0, (%)) and electron-donating capacities (EDC, pH 7, 0.61 V vs.
476  standard hydrogen electrode) of (8) OM isolates collected in 2012 and comparison with (0) IHSS

477  reference materials obtained from previous work by Aeschbacher et al.”
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