Journal of Multivariate Analysis 142 (2015) 86 105

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Half-region depth for stochastic processes @cmsMark

James Kuelbs?, Joel Zinn ™

2 Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, United States
b Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

ARTICLE INFO ABSTRACT
Article history: We study the concept of half-region depth, introduced in Lopez-Pintado and Romo (2011).
Received 3 February 2014 We show that for a wide variety of standard stochastic processes, such as Brownian motion

Available online 21 August 2015 and other symmetric stable processes with stationary independent increments tied down

at 0, half-region depth assigns depth zero to all sample functions. To alleviate this difficulty

/ we introduce a method of smoothing, which often not only eliminates the problem of zero
E:C?sgfoggg 17 depth, but allows us to extend the theoretical results on consistency in that paper up to the
62E20 Y n level for many smoothed processes.

AMS 2010 subject classifications:

2015 Elsevier Inc. All rights reserved.
Keywords:
Depth
Consistency
Central limit theorems
Empirical processes

1. Introduction and some notation

A number of depth functions are available to provide an ordering of finite dimensional data, and more recently in [ 14] the
interesting notion of half-region depth for stochastic processes was introduced. This depth applies to data given in terms of
infinite sequences, as functions defined on some interval, and even in more general settings.

In this paper we focus on three items. The first is to show (see Section 2) that for many standard data sources this depth
is identically zero, and hence one needs to be cautious when employing it. In particular, we will see sample continuous
Brownian motion, tied down to be zero at t 0 with probability one, assigns zero half-region depth to all functions
h  CW 1, but we show this sort of behavior also holds for many other random processes widely used to model data in a
variety of settings. A second item we examine is how the difficulty of zero half-region depth can be avoided, and fortunately
in many situations smoothing the process by adding an independent real valued random variable Z with a density as in (28)
(also see Proposition 4) changes things dramatically for half-region depth. In particular, it allows us to establish positivity
for this depth and, as can be seen from Remark 4, the smoothed data remains a good approximation of the original input
by taking E Z small. Using Proposition 4 as in Remark 5, we also provide some sufficient conditions where smoothing is
unnecessary for positive half-region depth.

The third item we consider involves limit theorems for the empirical half-region depth of these smoothed processes,
and Theorem 1 is a basic consistency result with Theorem 2 and Corollary 6 providing some rates of convergence for this
consistency. Moreover, a sub-Gaussian tail bound is obtained in Corollary 6. Theorem 3 implies a consistency result and

n-rates for half-region depth over all finite subsets of T of cardinality less than or equal to a fixed r. Hence, Theorem 3
extends the consistency result for random Tukey depth in [2,3] to half-region depth under weaker conditions, i.e. less

Corresponding author.
E-mail addresses: kuelbs@math.wisc.edu (J. Kuelbs), jzinn@math.tamu.edu (J. Zinn).

http://dx.doi.org/10.1016/j.jmva.2015.07.012
0047-259X/ 2015 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jmva.2015.07.012
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2015.07.012&domain=pdf
mailto:kuelbs@math.wisc.edu
mailto:jzinn@math.tamu.edu
http://dx.doi.org/10.1016/j.jmva.2015.07.012

J. Kuelbs, J. Zinn / Journal of Multivariate Analysis 142 (2015) 86-105 87

independence is used and the depth is computed using multi-dimensional marginals rather than those of one dimension.
Now we turn to the notation used throughout the paper, and following that we indicate some additional details on our
results and how they relate to other recent papers.

To fix some notation let X := {X(t) = X;: t € T} be a stochastic process on the probability space (§2, ¥, P), all of whose
sample paths are in M(T), a linear space of real valued functions on T which we assume to contain the constant functions.
To handle measurability issues, we also always assume that h € M(T) implies

sup h(t) = sup h(t) < oo, (1)
teT teTy
where Ty is a fixed countable subset of T. Typical examples of M(T) are the uniformly bounded continuous functions on T
when T is a separable metric space, or the space of cadlag functions on T for T a compact interval of the real line. In either
of these situations Ty could be any countable dense subset of T. It should also be observed that since (1) holds on the linear
space M(T), then h € M(T) implies
infh(t) = inf h(t) > —oo and ||h|loc = sup |h(t)| = sup |h(t)| < oo. (2)
teT teTp teT teTy

Ifg,h: T — RandS C T,letg <sh(resp., g > h), denote that g(t) < h(t) (resp.,g(t) > h(t))forallt € S.WhenS =T
we will simply write g < h (resp.,g > h). Then, for a function h € M(T), the half-region depth with respect to P is defined
as

D(h, P) := Dyg(h, P) :== min(P(X > h),P(X < h)). (3)

To simplify, we also will write D(h) for D(h, P) when the probability measure P is understood. Since M (T) is a linear space
with (1) and (2) holding, and the sample paths of the stochastic process X are in M(T), we see for each h € M(T) that

X =h}={X=gh} and {X > h}={X>gh}. (4)

Thus the events in (3) are in & and the probabilities are defined.

Assume that X, X1, X3, ... are i.i.d. copies of the process X defined on the probability space (§2, #, P) suitably enlarged,
if necessary, such that all sample paths of each X; are in M(T). Then, the empirical half-region depth of h € M(T) based on
the i.i.d. copies X1, ..., X; is

Dy = min | =3 106 =, D I0G = (5)
j=1 Jj=1

Throughout this paper to be certain the half-region depth is not degenerate at zero the smoothing we use is as in
Proposition 4. However, the reader may care to notice that in Theorems 1 and 2 we actually assume more on the density
fz(+), but those assumptions are only required to facilitate their proofs. The positivity of the half-region depth already holds
under the weaker assumptions on f7(-) of Proposition 4. Other forms of smoothing may also be beneficial when seeking to
avoid the problem of the depth being degenerate at zero, and some work is currently being done in this direction. To deal
with the 0-depth problem Lépez-Pintado and Romo [ 14] consider another depth, which they call modified half-region depth
(see the definition below). There the depth itself is changed so as to be less restrictive and non-degenerate at zero, whereas
here we retain the depth, but apply it to data which has been smoothed. One reason which motivates our choice, at least
for us, is that there are examples where the ordering produced by modified half-region depth produces multiple medians,
contrary to what one would intuitively expect. Furthermore, half-region depth typically orders the original paths or suitably
smoothed paths in these examples so as to identify the intuitive median as being the unique median. To make this more
precise, we consider the following simple examples.

In the first two examples T = [0, 1], p(-) denotes Lebesgue measure on T, and we assume the sample functions of the
stochastic process {Y (t) : t € T} are jointly measurable in (t, w) with respect to Lebesgue measure on T and the probability
P = L(Y).Then, if h(-) is a Lebesgue measurable function on T, the p-modified half-region depth of h(-) is

MD(h, P, p) = min [ / P(R(E) < Y(0)dp(D), / P(h(D) = Y(r))dp(r)] .
T T

Example 1. If sup,c(p 1) |Y(£)] < A < oo and Y(t) has continuous distribution function for all t € [0, 1], then modified
half-region depth based on Lebesgue measure on [0, 1], never has a unique median. For any subset A C [0, 1] with measure
1/2, one considers hy := A(2I4 — 1). Then, for each t € [0, 1], we have P(Y(t) = —X) = 0 and that

P(Y(t) < ha(t)) = Ia(t) + Iac (OP(Y () = —A) =[x ().

Similarly, P(Y(t) > ha(t)) = Iac(t), and therefore the modified half-region depth of hy is 1/2. Since, 1/2 is the maximal
value of this depth when the distribution function of Y (t) is continuous for all t, h4 is a median. In particular, among these
medians we have h 1/ - h(1/2,1) = 0, and if the distribution of Y is symmetric enough around the zero function, neither of
these functions seems an intuitive median. Furthermore, if we smooth the process Y as in Proposition 4, then the half-region
depth of the smoothed process is positive, but unless we know more about the Y process it is still hard to determine the
median for this half-region depth. Our next two examples are more specific, and allow us to make such determinations.



88 J. Kuelbs, J. Zinn / Journal of Multivariate Analysis 142 (2015) 86-105

The next example is a special case of those above, but the extra details allow to show that not only does it have multiple
modified half-region medians as in Example 1, it also has the same unique half-region median for both the original data,
and suitably smoothed data. Moreover, this unique median is what one would intuitively expect.

Example 2. For t € [0, 1] and U a uniform random variable with values in (=3, 1), let

22
Y(t) =U.

Also, assume Lebesgue measure on [0, 1] is used to determine the modified form of the depth. Then, one can easily check
that for h(t) = 0,0 < t < 1, the half-region and modified half-region depth of the function h with respect to the probability
law of Y are both % and since the distribution function of Y (t) is continuous for each t € [0, 1], his also a median. Moreover,
h is the unique median for the half-region depth based on Y.

To define the smoothed data we take Z to be Gaussian with mean zero, variance o2 > 0, and independent of {Y(t) : t €
[0, 1]}. Then,

Xt)=U+2, tel0,1],

and the half-region depth of the function h with respect to the law of X is also % Of course, Z need only be symmetric about
zero for this to hold, but for Z centered Gaussian and o2 > 0 small, on average

|Z| = sup |X(t) —Y(t)|
te[0,1]

is quantifiably small. Moreover, since the distribution function for X(t) is continuous for each t € [0, 1], this depth is at
most % and h is the unique median with respect to the half-region depth given by X.

In addition, the process Y has many (actually infinitely many) modified half-region depth medians beyond those
already obtained as in Example 1. These are of interest as they are also continuous functions on [0, 1]. For example, let
k(t) : [0, 1/2] — [0, 1/2] be continuous with k(1/2) = 0, and define

[k, O0<t<1/2
H(t)_{k(]—t), 12<t<1.

Then, H is continuous, and withV = U + % we have

1/2

1/2 1/2
/ P(U < H(t))dt = / P(V <1/2—k(t))dt = / (1/2 — k(t)) dt
0 0 0

and

1 1 1/2
/ P(U < H(t)) dt = / P(V <1/2+k(1—1t))dt = / (1/2 + k(s)) ds.
1 0

/2 1/2

The sum of these is f01/2 1dt = 1/2, and as before, each such H is a continuous median.

It is easy to find other such medians for modified half-region depth in this situation (simply take k to be something other
than continuous), and perhaps one suspects that this is because the process Y is very special. This may be part of the story,
but not all of it, as there are other processes Y that present similar problems. Here is one for which the modified half-region
depth has some unusual properties.

Example 3. Here we assume T = {1, 2, 3, ...},and M(T) = £°°(T), the linear space of bounded real sequences, with norm
lalloo = sup;er |a(t)|fora = {a(t) : t > 1} € M(T).For G(t), t > 1, i.i.d. centered Gaussian random variables with variance
one, we define Y(t) = G(t) A 1if G(t) > 0,and Y(t) = G(t) v (—1) if Y(t) < 0. Welet P = £(Y) and for Z also N(0, 1),
and independent of {G(t) : t € T}, we define X(t) = Y(t) + Z fort € T, and let Q denote the law of {X(t) : t € T} on
M(T). Then, D(a, P) and D(a, Q) defined as in (3) denote the half-region depths of a € M(T) with respect to P and Q, and
the process {X(t) : t € T} is the smoothed version of the process {Y(t) : t € T} given as in Proposition 4.

If A € T, we consider the probability p(A) = }_,., 4, where each q; > 0 and p(T) = 1. Then, fora = {a(t) : t € T} we
define the p-modified half-region depth of a with respect to P to be

MD(a, P, p) := min [/ P(Y(t) = a(t))dp(t), /P(Y(t) = a(t))dp(t)] . (6)
T T

The depths of these processes have a number of interesting properties, and taking T countable simplifies some of the
details in their verification. They appear as (I)-(VI) below along with a few details indicating how the conclusions are
obtained, but the full proofs are in [12]. In particular, they show that even for data that is symmetric about zero, the zero
vector is not the median for the modified half-region depth with respect to P, but it is the median for half-region depth for
Q, the law of the smoothed process X. Moreover, we indicate in (VI) how one can embed such examples into step functions
with countably many jumps on [0, 1) and use Lebesgue measure for the modified half-region depth as in Examples 1 and 2.
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() D(@a,P) = 0and D(a, Q) > Oforalla € M(T).
(I Ifa={a(t): t e T}and a(t) = cforallt € T, then
D@,Q) = min[Q(Y(t) >c—Z, VYVt €T),Q(Y(t) <c—Z, Vt € T)]
= min[®(—1—¢), ®(—1+0)]. (7)
In particular, ifa = 0 is the zero vector in M(T), then D(0, Q) = @ (—1), and this maximizes the half-region depth over

the constant vectors.
() Ifa={a(t) : t € T}and {a(t) : t € T} has a subsequence {a(ty) : k > 1} converging to some constant c, then

D@, Q) < min[®(—1—1c¢), D(—1+0)]. (8)

Furthermore, since M(T) consists of uniformly bounded sequences, every a € M(T) satisfies these assumptions, we
therefore have

D@, Q) <min[®(—1—c¢), ®(—1+c)], aeM(), 9)
which implies

supD(@, Q) < ¢(—1) = D(0, Q). (10)

aeT

Hence the zero vector is the unique median for the smoothed half-region depth when Z is N(0, 1).
Ifa € M(T), then the p-modified half-region depth of a with respect to P is such that

—
—_
<

=

1
MD(a,P,msz[H 3 qffp(—l)] (11)

{t:a(t)==+1}
Furthermore, if A C T withay = {aa(t) = QIx(t) — 1) : t € T}, thenay(t) = 1 forallt € T and

MD(ay, P, p) = min [Z S+ Y Gy d+ ) ¢(—1>q[}

teA teAc teA teAC
min[® (—1)p(A) + p(A%), p(A) + @ (=1)p(A)]. (12)
Hence, if p is such that there exists A C T with p(A) = % then

1
MD(a4, P, p) = MD(axe, P, p) = 5[
If p is such that for A C T we have p(A) = % then both a4 and a4 are medians for the p-modified half-region depth
with p-modified half-region depth %[1 + @(—1)]. Moreover, the zero vector is such that MD(0, P, p) = % and hence
is not a median. Given the symmetry about zero in this particular example, that zero is not a median indicates modified
half-region depths lacks a property one might readily expect. Furthermore, if p is such that the q; are small dyadic
rationals, possibly some of them repeated and summing to one, then there can be several choices for the set A with
pA) = 5.
(VI) The example discussed in (I)-(V) can be realized in the space of step functions on [0, 1) with the modified half-region
depth being with respect to Lebesgue measure on [0, 1). Thatis,letq; = p({t}) > Ofort € T = {1, 2, ...}, and assume
po(T) =1.Setl; =[0,q1), L =1q1,91 + q2), ..., wherel, = [q1 + - - - + qn—1, q1 + - - - + qn) for n > 3, and define

M([0, 1)) = {a(t) : a(t) = a;, t € I;,j > 1, sup|qgj| < oo}.
j=1

14+ @(=1)]. (13)

s

Now let g1, g, ... be iid. N(0, 1) random variables, and define Y(t) = g A 1,t € I;,j > 1, wheng > 0, and
Y(t) =gV 1,tel,j>1,wheng < 0.Then, the properties established in (I)-(V) also hold for this model.

We now conclude the introduction with a few comments and some connections to other papers. The zero depth results we
obtainin Section 2.1 are such that every function in the natural support of the process has half-region depth zero. The results
in [5,1], which we found as we were in the final writing of this paper, differ in that they show almost every function (with
respect to the law of the process) has zero half-region depth. We also observe in Section 2.1 that the size of the collection
of evaluation maps used in formulating a depth in the infinite dimensional setting, can make an enormous difference. If
the collection is too large it is likely the depth will be degenerate, and if it is too small the depth may not reveal details
of importance in the data. This phenomenon also appears in connection with the central limit theorems we obtained for
empirical processes and empirical quantile processes in [9,11], where these CLTs may fail if the class of sets is too large, or
there are degeneracies in the sample paths, as with Brownian motion tied down at zero. Of course, smoothing helps, but
the exact form of the depth and the evaluation maps used to define it can still produce unusual behavior. For example, in
the setting of half-region depth the symmetric stable processes with stationary independent increments, cadlag paths on
[0, 1], and tied down at t = 0, are such that all cadlag paths on [0, 1] have half-region depth zero (Corollary 4), whereas
by Proposition 4 these processes smoothed as in (28) have positive depth. Moreover, they satisfy the consistency results
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and /n-asymptotics provided in Theorems 1, 2, and 3. However, if we look at the increment half-region depth formed by
differences of evaluations over only countably many disjoint subintervals of [0, 1] as in Corollary 3, we see that both the
smoothed and the unsmoothed version of these processes yield zero increment half-region depth for every function on
[0, 1].

2. Zero half-region depth and how it can be eliminated

For many stochastic processes used in modeling data, half-region depth may be identically zero, but if we smooth the
processes as in Proposition 4, this problem is eliminated. Section 2.1 deals with explicit classes of examples, and although
these results demonstrate that zero half-region depth is a common phenomenon for many standard processes, the tools
developed there should be useful when examining other processes for this problem. Furthermore, it should also be observed
that the smoothing result in Section 2.2, and the consistency and /n-asymptotics of Sections 3 and 4, are independent of
the proofs in Section 2.1.

2.1. Some examples

The half-region depths we examine first are for product probabilities P on the space of all real sequences R(T), where
T={t:t=1,2...},and for each h € R(T) the half-region depth remains to be defined as in (3). As before we will write
D(h) for D(h, P) when the probability measure P is understood.

For many such P the uniformly bounded sequences M(T) have probability zero, yet we still want to examine such
situations as they are natural models of data sources, and they also can be used (as in Corollaries 2 and 3) to determine
when a half-region depth may be zero. For example, if P is the product probability whose coordinates are i.i.d. centered
Gaussian with variance one, then every coordinate-wise bounded sequence in R(T) has half-region depth equal to zero with
respect to this P. Although the set of all such sequences has P-probability zero in this example, a little thought suggests
much more may be true, and our next proposition shows that under rather broad circumstances the half-region depth may
be zero for all sequences in R(T). In particular, it applies to the Gaussian example we mentioned, and in Corollary 1 it also
allows us to examine the situation for sequences converging to zero, which are relevant when P assigns mass one to a Banach
sequence space suchas cpor £,, 1 < p < o0.

Furthermore, if P assigns probability one to M(T), then using Proposition 4 at the end of this section we can show the
half-region depth of every h € M(T) can be strictly positive for a smoothed version of the input data. This latter result
applies to data indexed by countable or uncountable T, and M(T) is as defined earlier. Of course, if T is countably infinite,
then M(T) is a subset of the sequence space £, but our results also apply to many standard stochastic processes indexed
by uncountable T.

Our first result provides necessary and sufficient conditions for half-region depth to be identically zero for P a product
measure on the sequence space R(T). In contrast, a sufficient condition that implies a half-space depth is zero with
P-probability one in R(T) for various probabilities P, can be found in [10]. However, these half-space depths are not zero
everywhere, so determining when they are zero, when they are positive, and consistency issues for the related empirical
depth are the main concerns there.

Proposition 1. Let {Z; : t > 1} be independent rv’s on the probability space (2, ¥, P) with distribution functions F;, and
assume a = {a;}°, is any sequence in R(T). Then, D(a, P) = 0 if and only if

(i) foratleastonet € T,P(Z; > a;) =0or P(Z; <a;) =0, or
(ii) forallt € T, P(Zy > a;) > 0and P(Z; < a;) > 0, and

D P #ar) = oo (14)

teT

Remark 1. Under the conditions of Proposition 1, it is immediate that the conclusion of Proposition 1 is equivalent to the
claim that D(a, P) > O ifand only if forallt € T,P(Z; > a;) > O and P(Z; < a;) > 0, and

> P #a) < oo (15)
teT

Proof. Under the assumptions of Proposition 1, it suffices to prove Remark 1. To do this we first we note that

D@, P) = min(P(Z; < a; forallt > 1),P(Z; > a, forallt > 1))

= min (1_[ Ft(at), l_[(] - Ft_(a[))> s
t>1 t>1

where F; (x) is the left limit atx € R.
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Hence, D(a, P) > Oif and only if for all t € T we have P(Z; > a;) > 0 and P(Z; < a;) > 0, and both the products
[[Fr@ =[]0 -P@ > a)), (16)

t>1 t>1

and

[Ta-F@)=]]a-P@ <a (17)

t>1 t>1

are strictly positive. Since P(Z; > a;) > 0and P(Z; < a;) > Oforallt € T, the products in (16) and (17) are strictly positive
if and only if

ZP(Zt > a;) < oo and ZP(Zt < a;) < o0, (18)

teT teT

respectively. Now both series converging in (18) is equivalent to (15), and hence the proof is complete. O

Corollary 1. Let {Z; : t > 1} be independent rv’s on the probability space (§2, ¥, P) with continuous distribution functions F;
for t € Ty, where T is an infinite subset of T. Then, D(a, P) = 0 for all sequences a = {a,};2, in R(T). Furthermore, if for t € T
and some 6 > 0 we weaken the continuity assumption to F, being continuous on (—4, 8), then D(a, P) = 0 for all sequences

a = {a;};2, such that lim;_, |a;| = 0.

Proof. If the distribution functions F; are continuous on R for all t € T;, where T; is an infinite subset of T, then
P(Z; # a;) = 1 for all such t's and (14) holds. Thus P(Z; > a;) > Oand P(Z; < a;) > Oforallt € T, and part (ii) of
Proposition 1, implies D(a, P) = 0. Of course, if it is not the case that P(Z; > a;) > 0 and P(Z; < a;) > Oforallt € T, then
we also have D(a, P) = 0.

If the assumption of continuity is weakened as indicated, then an entirely similar argument applies for all sequences
converging to zero. 0O

Remark 2. In the previous corollary continuity of the distributions F;,t € T, played an important role in showing zero
half-region depth, but it clearly is not a necessary condition. For example, if {Z; : t € T} are independent random variables
with P(Z; = £¢;) = d;, t € T, where {¢, : t € T} are strictly positive constants, ) ,.; d; = 00, and F, t € T, is arbitrary
otherwise, then Proposition 1 immediately implies for any sequencea = {a; : t € T}

D(a,P) =0.

It is also easy to formulate two immediate consequences of Corollary 1, where natural sequential half-region depths
will always be zero for probabilities which behave well in many instances, and are important in many modeling situations.
Since more restrictions in the definition of a half-region depth make it easier for the depth to be zero, it is interesting to
observe that in both examples the class of evaluation maps used to define the depths is again countably infinite. In the first
we assume P is a centered Gaussian probability measure on a separable Banach space with infinite dimensional support.
Then, it is well known that there are many sequences of continuous linear functionals 4 = {«; : t € T} C B* that are i.i.d.
centered Gaussian random variables with fB a?(x)dP(x) = 1, and for P-almost all x € B

lim

n—oo

n
X — Z O[[(X)Sat = 0,
t=1

where || - || is the norm on B, and for each @ € B*, S« is the Bochner integral f 5 X (x)dP (x). Hence, with P-probability one the
sequence A4 = {o; : t € T} determines x € B in the sense that above series converges to x, and we define the 4-half-region
depth of a vector a € B to be

D4 (a, P) = min{P(o(x) > o (@), Vt € T), P(a;(x) < at(a), Vt € T)}. (19)

Corollary 2. If P is a centered Gaussian measure on a separable Banach space with infinite dimensional support, and A = {o; :
t € T} C B*isas above, then foralla € B

D,(a, P) = 0. (20)

In the second application of Proposition 1 we let X = {X(t) : t € [0, 1]} be a symmetric non-degenerate stable process
with stationary independent increments and cadlag sample paths on [0, 1]. If X is tied down at t = 0, then Proposition 3
shows that the half-region depth of every cadlag path on [0, 1] is zero with respect to P, and here we examine what might
be considered a natural depth for the increments of these processes. Unfortunately, this depth is also zero for every function
on [0, 1].
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Corollary 3. Let 4 = {I; = [u;, vj],j = 1} consist of disjoint intervals of [0, 1], and define the increment half-region depth for
every function h on [0, 1] with respect to P = £(X) and {4 by

Dy(h, P) = min{P(X(]j)) = h(I)), ¥Vj = 1), PX([j) < h(L)), Vj = D},
where f (I)) = f (vj) — f(u;) for every function f on [0, 1]. Then,
D;(,P) =0. (21)
As mentioned above, both Corollaries 2 and 3 are immediate from Corollary 1, and the continuity of the relevant

distribution functions.
The next proposition will allow us to obtain several more typical examples of “zero half-region depth”.

Proposition 2. Let {X(t): t € T}and {Y(t) : t € T} bei.i.d. stochastic processes on (£2, ¥, P), all of whose sample paths are in
the linear space of functions M(T). If h € M(T) and

PX—-Y=0)=0 (22)
for some subset S of Ty, then D(h, P) = 0.
Proof. If the depth of h € M(T) is positive, then the product, P(h < X) - P(X < h), is positive. So, since we always are
assuming (1), (4) and (22), we then have

0 <P(h=1,X) - PX=Zryh) =P(h=g, X, Y =g, h)

SPY 2 X) SP(Y—-X=50)=0. O (23)

Corollary 4. Let X be an independent increment process with paths in the Skorohod space D[0, 1] such that

1. the increments have a continuous distribution, and

2. PX(0)=0)=1.

If h € D[O, 1], then D(h, P) = 0.

Proof. LetZ = X — Y, where X and Y are defined on the probability space (§2, #, P), Y is an independent copy of X, and X
and Y have sample paths in D[0, 1]. Using Proposition 2, with Ty the rational numbers in [0, 1] and S = {% k=1,2,...},
we only have to check that P(Z <5 0) = 0. We will assume not. But, by the (right) continuity at t = 0 and telescoping terms
we have

1 . 1 1 o d o & ,
()= (}) < ()] m o= Fao

where A;(Z) = [Z(]l.) - Z(Hi])]. Therefore, by our choice of S and (24)

0<P(Z=s0)=P (ZAj(Z) <0,Vk> 1)

j=k

o0
<P <Z Aj(Z) <0, eventually in k) .

j=k

This last event is in the tail o-field of {Z(]l.) — Z(p%l) : j > 1}, so by Kolmogorov’s zero-one law and the symmetry of Z, we
have

o0 o0
P (Z Aj(Z) <0, eventually in k) =P (Z Aj(Z) = 0, eventually in k) ,

Jj=k Jj=k

and both probabilities are one. Hence, by (24) we have

1
P (Z (7) = 0 eventually in k) =1,
k

and therefore P(Z(1/k) — Z(1/k + 1) = 0 eventually in k) = 1. By the independence of the increments this last statement
is equivalent to

P(Z(1/k)y —Z(1/k+ 1) # 0) < oo.
k=1

Since each term is 1, we have a contradiction. O
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Remark 3. LetX = {X(t) : t € [0, 1]} be a symmetric stable process with parameter r € (0, 2], and stationary independent
increments with paths in D[0, 1]. If we also have P(X(0) = 0) = 1, then the conclusion of Corollary 4 immediately holds. If
r = 2 and X is Brownian motion with continuous sample paths, then the result also holds in that setting. However, if X is
a Poisson process with parameter A > 0, then the first condition of Corollary 4 does not hold. And, if £ has an exponential
distribution with mean X, then

P(X(t) <Oforallt € [0,1]) =P( > 1) > 0.
Therefore, the half-space depth of the 0 function is positive. Of course, the same conclusion is valid for compound Poisson
processes starting at zero with probability one.
Corollary 5. Let X = {X(t) : t = (t1, t) € [0, 1] x [0, 1]} be a centered Brownian sheet with covariance

E(X(t1, £2)X(s1, s2)) = min{sy, t1} min{sy, tp}, (25)

and continuous pathson T = [0, 1] x [0, 1]. If his a continuous function on T and P is the law of X, then the half-region depth
D(h,P) = 0.

Proof. LetZ = X — Y, where X and Y are defined on the probability space (§2, #, P), Y is an independent copy of X, and
X and Y have sample paths in C(T). Let Ty be the subset of T consisting of points with both coordinates rational numbers in
[0,1]and letS = {t € Ty : t = (t1, t1)}. Using Proposition 2, we only have to check that P(Z <5 0) = 0. We will assume
not. Then,

0<P(Z(t) <0, forallt € S) = P(B(u) <O0forall,u € [0,1]NQ),

where Q is the rational numbers and B(u) = Z(u, u), u € [0, 1]. Since {B(u) : u € [0, 1]} is a Brownian motion process with
continuous sample paths and P(B(0) = 0) = 1, we have

P(B(u) < O0forallu € [0, 11N Q) = P(B(u) <[0.110) =0,
where the last equality follows from Remark 3. O
The next result applies to many Markov processes with or without independent increments.
Proposition 3. Assume the stochastic process X = {X;: 0 < t < 1} has sample paths in the Skorohod space D[0, 1] and it
satisfies

1. the Blumenthal zero-one law at t = 0, i.e., for every A € 3—‘0+ = Ni=o F: we have P(A) = 0 or 1, where ¥; = Up<s<; 0 (X;)
and o (X;) is the minimal sigma-field making X; measurable, and
2. forevery t > 0, X(t) has a continuous distribution function.

Then, the half-region depth D(h, P) = 0 for every h € D[0, 1].
Proof. If D(h, P) > 0, then

P(X(:) 2po,11h()) > 0 (26)
and

P(X() <o, h(-)) > 0. (27)
Forn > 1, let

En ={X() Zp/mh()} and F, = {X() <p,1/m h()}.
Then, for every integer k

E = {X(t) = h(t) eventuallyas t |, 0} = Up>y Ep,
and

F ={X(t) <h(t)eventuallyast | 0} = Up>k Fy.

This implies E € Fy,, F € ¥ forall k > 1, and therefore E, F € 370+ = N2, Fik- Now (26) implies P(E) > 0 and (27)
implies P(F) > 0, so the Blumenthal zero-one law implies P(E) = P(F) = 1. Since the events E, and F, increase in n, we
have that there exists a ko such that n > kq implies P(E,;) > 3/4 and P(F,) > 3/4.Hence

P(E,NF,) > 1/2 foralln > k.

Since E;, N F, = {X(t) = h(t), VYt € [0, 1/n]}, this is a contradiction to the fact that X(t) has a continuous distribution for
all t > 0. Thus the half-region depth of h € D[0, 1] must be zero. O
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2.2. Eliminating half-region zero depth by smoothing

Although sample continuous Brownian motion, tied down to be zero at t = 0 with probability one, assigns zero half-
region depth to all functions h € C[0, 1], by starting the process randomly with a density changes things dramatically. This
follows immediately from the next proposition, and hence in order to be assured half-region depth is non-trivial, we use
smoothing in the results that follow in subsequent sections. Moreover, the precise assumptions used for smoothing in these
later results are also important in other parts of their proofs. The smoothed stochastic process X = {X(t) : t € T} will be
such that

Xt)=Yt)+Z,teT, (28)

where Z is a real valued random variable independent of the process Y = {Y(t) : t € T}, Z has density fz(-) on R, Y has
sample paths in the linear space M(T), and we are assuming M (T) is such that (1) holds. Of course, then (2) also holds, and
since we are assuming M (T) contains the constant functions on T, X also has its sample paths in M (T).

Proposition 4. Let X(t) = Y(t) + Z,t € T, whereY = {Y(t) : t € T} has sample paths in the linear space M(T) satisfy-
ing (1) and Z is independent of Y with density f;. If f > 0 a.s. with respect to Lebesgue measure on R and h € M(T), then the
half-region depth of h determined by {X(t) : t € T} is strictly positive.

Proof. Let h € M(T). Then,

P(X > h) = /oo P(Y(t) > h(t) — u, Vt € T|Z = w)fy (u)du. (29)

o0

Since (1) holds there exists an constant ¢ > 0 such that P(||Y]|e <€) > % and hence for u > 2c + ||h|| o we have

P(Y(t) > h(t) —u, Yt € T|IZ =u) > P(Y(t) > —2c, ¥t € T) > % (30)

Since f; > 0 a.s., by combining (29) and (30) we have

oo

P(X = h) > f 1fz(u)du > 0.

2c+|lhlloo
Similarly, P(X < h) > Oforallh € M(T), and hence D(h, P) > Oforallh € M(T). O

Remark 4. If P(||Y]|o < ¢) > Oforall c > 0, then it is easy to see from the proof of the previous proposition that the half-
region depth could be strictly positive for some h € M(T) without the density being strictly positive on all of R. Moreover,
X is a good approximation of Y in the sense that E(||X — Y||«) = E(|Z]), and we are free to take E(|Z|) > 0 arbitrarily small.

Remark 5. Let T = [a,b], —00 < a < b < 00, and assume M(T) denotes the real-valued cadlag paths on T. If X =
{X(t) : t € T} has paths in M(T), and Z := X(a) is independent of {Y(t) = X(t) — X(a), t € T} with density f; > 0 a.s. with
respect to Lebesgue measure on R, then Proposition 4 implies the half-region depth with respect to P = £(X) is strictly
positive on M(T). Hence, under these conditions no smoothing is required to be certain the depth is strictly positive.

3. Consistency for empirical half-region depth

The consistency result we prove depends on two lemmas, which are also important for the /n asymptotics we obtain in
Theorem 2. The proof of consistency is an application of empirical process ideas involving the Blum-Dehardt Theorem and
bracketing entropy.

Let X(t) = Y(t) + Z,t € T,whereY = {Y(t) : t € T} has sample paths in the linear space M(T) satisfying (1), and
Z is independent of Y with density f. Also, assume X;, X3, ... are i.i.d. copies of the process X with sample paths in M(T)
and that X, X1, X5, . .. are defined on the probability space (£2, 4, P). Then, with half-region depth and half-region empirical
depth defined as in (3) and (5), and since for real numbers a, b, c, d

|min{a, b} — min{c, d}| < |a—c|+ |b—d], (31)
the classical strong law of large numbers implies for each h € M(T)

lim |D,(h) — D(h)| =0 (32)

n—oo

with probability one. The theorem below refines (32) to be uniform over h € E, where E is a suitably chosen subset of M(T).

Notation 1. For a function f : £2 — R we use the notation f* to denote a measurable cover function (see Lemma 1.2.1 van
der Vaart and Wellner [16]).
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Theorem 1. Let X(t) = Y(t) + Z,t € T, whereY = {Y(t) : t € T} has sample paths in the linear space M(T), and Z is
independent of Y with density f;(-) on R that is absolutely continuous and its derivative f;(-) is in L, (R). Also, assume X1, Xa, . ...
are i.i.d. copies of the process X with sample paths in M(T) and that X, X1, X3, . . . are defined on the probability space (2, ¥, P).
If E is subset of M(T) such that for everyr > 0

E=EN{f e M) : flloc <1} (33)
is a sup-norm compact subset of M(T), then with probability one

lim sup |D,(h) — D(h)|* = 0. (34)

n—oo heE

In order to prove this result we first establish some lemmas which will also be useful in our refinements of (34) that
follow below. For h € M(T) we define the stochastic process {W} : h € M(T)} on (§2, ¥, P), where

Wy, =W(h) = Ean(X(t) —h(t)), heM(). (35)

Lemma 1. Let f be a probability density on R which is absolutely continuous and such that its derivative f' is in L' (R). Then,
/lf(X+5) —f®)dx < |3|/ If () |dx. (36)
R R

Proof. If § > 0, then

[ e o) —eodx = [ [ 1 @csenss dudx = oy Fubind [ 1) [ heoess dedu =3 [ 11 du,
R R JR R R R
which gives (36). The case § < 0 follows similarly. O

Lemma 2. Let X be as in (28) with Y and Z satisfying the assumptions of Theorem 1, and assume W, be as in (35). Then, for
hy, hy € M(T) we have

[Wh, — Wh,| < Ih1 — h2|lo- (37)
Hence, if ||h1 — hy|leo < 6, then
|P(Wh, > %) — P(Wh, > X)| <P(x—8 < Wy, <x)+P(x—38 < W, <x), (38)

and we also have

[P(Wh, = X) = P(Wp, = X)| = 25/ If ) ldx. (39)
R

Proof. First observe that foralls e T
gg (X(®) = h1 (D) < X(s) — h1(s) < X(5) — ha(s) + [Ihy — h1]lco-
Hence,
W, gng(X(t) - () < Sing(X(S) — ha(s)) + llh2 — 1l
= W, + llhy — il

and interchanging h; and h, we have (37).
Hence, if ||h1 — hy||oc < §, we then have from (37) that

P(Wy, =2 x) < P(Wp, 2 %) +P(x— 6 < Wy, <X) (40)
and
P(Wp, > x) <P(Wp, =x) +P(x—38 < W, <x), (41)

and (40) and (41) combine to give (38).
To verify (39) we define for h € M(T)

F(h,x) = P(Wy > x). (42)
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From (28), F(h, x) = P(inf;c1 (Y (t) — h(t)) + Z > x), and hence the independence of Y and Z implies

Fh.0 = [ PGitv(©) = h(o) = x = ). (43
Letting & (h) = inf,cr (Y (t) — h(t)), we see (43) implies

Fhx) = o) = [ Pr(h) = 9lf00 =9 ~ o = 9lds (a4)
Therefore,

o) = Pl < [ U =9 ot = 9. (45)

and setting u = x; — s we have x, — s = (x — X1) + u, so Lemma 1 implies

IF(h x) — F(h, x2)] 5/lfz(u)—fz(u+(xz—x1))|duf |X1—X2|/ 140 dx.
R R

Thus the lemma is proven since (38) and the above combine to give (39) when ||h; — hz||le0c < 8. O

Proof. In order to verify (34) we first will show for every € > 0 thereisanry < oo such that the strong law of large numbers
implies with probability one that

limsup sup  Dy(h) < P(||X[loc = 10) <€, (46)

n—oo  {h:[lhlloc>ro}
and

lim sup D(h) =0. (47)

T {heflhllco =1}

The argument for (46) and (47) is essentially the proof of Proposition 5 in [14], but the details are included below.
To prove (47) we observe

sup D(h) < Ar + By,

lhlloo=r
where
A = sup P(X > h),
lIhlloo=r, lIllco=sup h(t)
teT
and
B, = sup P(X < h).
llhlloo=r, lIhllco=sup(=h(t))
teT
Thus
A < sup P(sup X(t) > sup h(t))
|hlloo=suph(t)>r  teT teT
teT
< sup P(IIXllo = Ihlloo) < P([IX]loo = 1),
Ihlloo=sup h(t)=r
teT
and

B, < sup P@nfX(t) < ianh(t))
te

Ihllco=sup(—h(t))>r t€T
teT

= sup P(IXlloo = llhlloo) < P(IIXllew = 1),
\Ihl\w=su¥(—h(t))zr
te

and hence we have (47). To prove (46) we note that

sup Dn(h) = Ar,n + Br,n

Ihlloo=r
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where

An = sup ZI(X > h),

lIhlloo=r, IIhHoo—SUDh(t) n

and

Byn= ng < h).

Ihllco=r, ||hHoo_5UP( h(t))

Thus, in similar fashion it follows that

1< 1<
Arg < su — I(||X; > ||h < - I1(||X; > 1),
rn < P D 1UXllo > | ||oo>_nj:Z1 UXilloo = 1)

Ihlloo=sup h(t)=r T =5
teT

and

Brn < sup - Zunx loo = Il < = Zunx loo = 1),

||hHoo—5UP( he)zr N 5=

and therefore we have (46).
Since € > 0is arbitrary, (47) and (46) combine to imply (34) provided we show for every r > 0 that with probability one

lim sup |D,(h) — D(h)|* = 0, (48)

N—00 heE,

where E, is defined as in (33). The proof of (48) follows from the Blum-Dehardt Theorem using the bracketing entropy for
E, as in [4, p. 235]. That is, since E, is compact in M (T) with respect to the sup-norm, for every § > 0 implies there exists
finitely many points {h4, ..., hk@)} C E, such that

supinflh — hjlloc <

heE, hj

In addition, the brackets F(8, hj) = {z € M(T) : hj(t) — § < z(t) < h;(t) + 8} have union covering E, with z € F(8, h;)
implying

IX = hj+8) <IX =2z) <I(X = h;j —3).

Hence, for ¢ > 0 fixed, and § = §(¢) > 0 such that 46 fR If;(x)|dx < €, we have from (39) that &, = {I(X = h) : h € E;}isa
subset of

UCONIX = 2) 1z € B, (X = hj+8) < I(X = 2) < I(X = hy — 8)),

have &, covered by finitely many L-brackets of diameter €. A similar argument can be made for
={I(X <h):h€eE]},
and hence (48) holds by (31) and the Blum-Dehardt result mentioned above. Combining (47), (46),and (48) we have (34). O

and [[I(X > h; — 8) —I(X > hj + 8)|l1 < €, where || - ||; denotes the L, norm with respect to P. Hence, for every ¢ > 0 we

3.1. Some remarks on the C1 condition in [14]

Let X = {X; : t € [0, 1]} be a sample continuous stochastic process, and assume P is the Borel probability on C[0, 1]
induced by X. The main focus of the paper Lopez-Pintado and Romo [14] is the formulation of a consistency result for half-
region depth that is uniform over an equicontinuous family of functions on [0, 1], where the depth is with respect to X, or
equivalently the probability distribution P. One of the crucial assumptions in this endeavor is that P satisfy their C1 condition,
where
C1: Given € > 0, there exists a § > 0, such that for every pair of functions hy, h, € C[0, 1] with ||h; — hy || < § implies

P(hy <[0,11X Z0,11h2) < €. (49)

This condition appears on the bottom of page 1687 in [ 14]. The notation in [ 14] is slightly different than that above, but
(49) is consistent with their use of C1 on page 1688 of Lopez-Pintado and Romo [14]. However, the main problem with (49)
as used in [ 14] is two-fold. First, in their proof of Theorem 3 of Lopez-Pintado and Romo [ 14] it is applied to functions h1, h,
which are not continuous, and secondly it is claimed that for hy, h, € C[0, 1] with hy < hy

P(hy < X) —P(h = X) =P(hy =X 2 hy), (50)
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which is far from being true since
P(h1 < X) = P(hy < X) = P({hy < X} N {hy < X}°). (51)

Hence there are some major concerns with their proof, and in Theorem 1 we obtained a result that alleviates such
concerns. Moreover, we have taken care to discuss when half-region is non-trivial, and how to eliminate the problem of
it being trivial by using smoothing. Another question one might ask is whether the quantity

IP(hy = X) — P(hy < X)|, (52)

can be made arbitrarily small when hq, h, € C[0, 1] provided ||h; —h; ||« is sufficiently small. This is an important ingredient
in our proof, and we established sufficient conditions for this in Lemma 2, but it is easy to see it may fail in many cases. For
example, let

Xt = maX{O, Bt}v te [07 1]7

where {B(t) : t € [0, 1]} is a sample continuous Brownian motion such that P(B(0) = 0) = 1.Thus for h;(t) =0, t € [0, 1],
and hy(t) =8 > 0, t € [0, 1], we have ||h; — hy || = § and P(h; < X) — P(h, < X) = 1, no matter how small the constant
8.

4. Additional asymptotics for half-region depth

Our next result shows the consistency result of (34) can be refined to include rates of convergence provided we restrict
the set E to be a sup-norm compact subset of M (T) satisfying the entropy condition

f (I0gN(E. €. [ - o)) 2 €™ 2de < o0, (53)

o+

where N(E, €, || - ||oo) is thecovering number of E with e-balls in the || - || o-norm. In particular, since the processes
{v/n(Dn(h) —D(h)) :h € E}, n=>1, (54)

livein £, (E), we examine their asymptotic behavior in that setting, and in Corollary 6 produce sub-Gaussian tail bounds that
are uniform in n. The basic notation is as in Section 3, and we freely use the empirical process ideas for weak convergence
in the space £, (E) as presented in [4,16].

In the proof of these results we have need for the stochastic processes {Hn 15 : h € E},n > 1,and {H, s : h € E},n > 1,
where

»1 n
Ho1p = 7 j_;mxj > h) — P(X; > h)], (55)
and
-1 n
Hoon = 7 ;[z(x,- < h) — P(X; < h)]. (56)

The first step of our proof will be to show that each of these processes satisfies the CLT in £, (E) with limits that are centered,
sample path bounded, Gaussian processes G; = {Gy, : h € E} and G, = {G,,;, : h € E}, respectively, that are uniformly
continuous on E with respect to their L,-distances, and have covariance functions

E(Gip,G1py) =PX = hy,X > hp) =P(X = h))P(X = hy), hy, hy €E, (57)
and

E(Gan, Gopy) = P(X X hy, X < hy) = P(X < hy)P(X < hy), hy, hy €E. (58)
In the following theorem these Gaussian processes also appear in connection with the limiting finite dimensional

distributions of the centered empirical half-region depth processes given in (54), see (60)-(62).

Theorem 2. Let X(t) = Y(t) + Z,t € T, whereY = {Y(t) : t € T} has sample paths in the linear space M(T) and Z is
independent of Y with density fz(-) on R that is absolutely continuous and its derivative f;(-) is in L; (R). Also, assume X1, Xz, . . .
are i.i.d. copies of the process X with sample paths in M(T) and that X, Xy, X,, . . . are defined on the probability space ($2, ¥, P).
If E is a sup-norm compact subset of M(T) satisfying the entropy condition (53), then

lim sup P*(sup /n|D,(h) — D(h)| > 1) =0, (59)

=00 p>1 heE
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where P* denotes the outer probability for subsets of (2, ¥, P). Furthermore, there is a stochastic process {I', : h € E} such that
the finite dimensional distributions of the processes {/n(D,(h) — D(h)) : h € E}, n > 1 converge weakly to {I}, : h € E}, where

L(Ty) = L(Gyp) forheE and P(X > h) < P(X < h), (60)

L(Ty) = L(Gyp) forheE and P(X <h) <P(X > h), (61)
and

L(Ty) = LmMIn{Gyp, G2p}) forheE and P(X = h) =PX < h). (62)

Proof. Since (31) holds and X, X1, X5, ... are i.i.d. we have

Vn|Dy(h) — D(h)| < [Hn1.0| + [Hn2.nl. (63)
Hence (59) will hold provided we show
lim sup P*(sup [Hp1.4] > 1) =0, (64)
=00 n>1 heE
and
lim sup P*(sup |Hy 24| > 1) = 0. (65)
'=0 p>1 heE

To verify (64) and (65) it suffices to show that the stochastic processes {H, 1, : h € E}and {H, 2 : h € E} converge
weakly in £, (E) to the centered Gaussian processes G; and G, respectively. That is, once these CLT’s hold, then item (iii) of
Theorem 1.3.4 of [ 16] provides the conclusion we need.

In order to formulate these CLTs in £, (E) we let C be a family of subsets of M(T) indexed by E, where

C = Cinr U Cyyp, (66)

Cint={Ch:h€E) and Cyp={Cy:heE), (67)

Gy = {z € M(T) : inf(z(t) — h(t) = 0}, (68)
and

Ch={z e M(T): sup(z(t) — h(t) < 0}. (69)

Of course, since we are assuming M (T) is a linear space such that (1) holds we have the inf and sup defining the sets C, and
Dy, respectively, are the same when t € T is replaced by t € Tp.

Since £ (E) is a separable Banach space only when E is finite, we need to use weak convergence in the non-separable
setting, and proceed to verify that Ci,r and Cs,p, are both P-Donsker classes of sets. Then, since a finite union of P-Donsker
classes is P-Donsker, we will have € also P-Donsker.

To show Gy, is P-Donsker we recall the stochastic process {W}, : h € M(T)} on (§2, ¥, P) given in (35). Then, the path
X(t, -) is in Cy if and only if W,(-) > 0, and we also have X > h on T if and only if W, > 0. Therefore, Cj,s P-Donsker will
imply that the empirical processes {Hy 1,n : h € E} as givenin (55) converge in distribution on £, (E) to a centered Gaussian
measure yi,r With separable support in £, (E). Furthermore, y;y¢ is induced by the Gaussian process G; as indicated above.

Since (53) holds, for every § > 0 there are Ns = N(E, §, || - ||oo) functions hy, ..., hy, in E such that the brackets

F@8,h) ={z e M(T) : hj(t) — 6 <z(t) < hj(t) +6}, j=1,...,N;, (70)
have union covering E. Furthermore, z € F(§, h;) implies
IX >h+68) <IX>2z) <IX > hj = ).
Hence, for § > 0 fixed we have from (39) that
E={IX>=h):heE}
is a subset of
UP (X =2):z€E IX = hj+8) <I(X = 2) <I(X = hj — 8)}.
Furthermore,

X = by = 8) —1X = b+ 8)ll3 = (X = hj —8) —I(X = hj +8) |1

=PX >hj—8) —PX;>h+0) < 48/ If; (x)]dx,
R
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where || - ||, denotes the L, norm with respect to P, and the inequality follows from (39) and (70). Now
1 1
/ (logN(&,x, || - l2))2dx = / (logN(&, %%, || - l1)) 2 dx
o+ o+

< | (ogN(&, 2. || - [loo)) 2 dx

o+

where the inequality follows since || - |1 < || - |0 0n M(T). Letting s = x? in the right most integral above and applying (53)
we have

/<1og1v(e:,x, ||-||z>)%dxs/ (l0gN(E. s, | - lloo)) b5~ Fds < oo. (71)
ot ot

Hence by Ossiander’s CLT with bracketing Ossiander [15], or as in [4], p. 239, we have & a P-Donsker class of functions,
which implies Cjy is a P-Donsker class of sets. Hence the empirical processes {Hy 1, : h € E} givenin (55) converge weakly
in £ (E) to the centered Gaussian process G; induced by the Radon Gaussian measure yj,r and has covariance as indicated
in (4.5). A similar result holds for the empirical processes {H, > : h € E} given in (56), which therefore satisfy the CLT in
£~ (E) with centered Gaussian limit G,. Hence (59) is proven.

The next step of our proof is to show the finite dimensional distributions of the stochastic processes in (54) converge. To
check this we set

Fa(h) = %Zl(xj <h), F(h)y=P(X <h),
j=1
and
G = 310G = ), G = PX = ).
j=1

Hence, letI = I; U, U I3, where Iy, I, I3 are disjoint,

11:{h17~~»hr1}, Izz{hr1+1v~«~ahr2}a 13:{hrz+15"~ahr}7

and
L ={hel:F(h) <Gh)}, L ={hel:F(h) > G},
and
Is={hel:F(h) =G}
Setting
Va(h) = +/n(Dy(h) — D(h)),
we have

Va(h) = v/n[min(F,(h), Gy (h)) — min(F (h), G(h))].,
and since I is an arbitrary subset of E to prove the finite dimensional distributions of the processes in (54) we need to show
(Vn(hl)s R Vn(hr)),

converges in distribution on R'.
Forn > 1let

Un(h) = v/n(Fa(h) — F(h)), hel,
Un(h) = V/n(Ga(h) — G(h)), hel
Un(h) = v/nmin(Fy(h) — F(h), Ga(h) — G(h)), h e,

and take
N(w) = min{m > 1: Uy(h;)) = Vp(hy), 1 <i <1y, n>mj}.

Then, the strong law of large numbers implies P(N < co) = 1, and U, (h) = V,,(h) forall h € I and all n > N. Therefore,
HILHQCP(Shli?IUn(h) —Vi(W)| z €) = lim P(N >n) =0,
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and the convergence of the finite dimensional distributions will hold if we show
Ty = uUp(hy) + - - + u Up(hy)
converges in distribution for all (uy, ..., u,) € R". Setting

n 2
So=Y ui(Fa(h) — F(h)) + Y ui(Galhy) — G(y)),
j=1

j=r1+1

we have

T, = \/E[min[sn + ur2+1[Fn(hr2+1) - F(hr2+l)], Sn + Upyt1 [Gn(hr2+1) - G(hr2+1)]]]

+/n Z u; min[F,(hj) — F(hy), Gp(hy) — G(hy)].

j=r2+2

k
A(ala b]v ap, va e Qg bk) = Z min[ai7 bi]?

i=1

then A is continuous from R?¥ to R¥, Therefore, if k = r — 1, with
Ry = (an1,bn1, - .-, Gur—ry, bnr—ry)

and
anq = \/H(Sn + Ury1[Fa(hry1) — F(hr2+l)])7
bn1 = V/n(Sn + Upy41[Gr(hry41) — G(hpyi)]),
i = /Ny il Fa(yii) — F(heya)l, i=2,...,1 =12,
bni = V/MUry1ilGa(hrysi) — G(hys)], i=2,...,1 — 1,

we have R, converging weakly to a centered Gaussian random variable, i.e. it is a sum of independent vectors in R>—"2)
whose summands are indicator functions multiplied by u;’s. Now A(R,) = T, and thus the continuous mapping theorem
implies T, converges in distribution. Since the vector (uy,...,u;) € R’ is arbitrary, the finite dimensional distributions
converge. Of course, the claims in (60), (61), and (62) involving the one dimensional distributions are also now proven. 0O

Next we turn to a corollary of Theorem 2, which provides sub-Gaussian tail bounds for the convergence to zero in (59).
To avoid measurability issues arising in its proof, we assume the set E is countable. Of course, under the assumption (1) and
that M(T) is a linear space, we have that the random vectors (stochastic processes)

{(Dp(h)) —D(h) :he€E} and Hp;:={Hnin:hekE}, i=1,2,

given in (55) and (56), take values in the Banach space £, (E) with norm ||X||sc = suppc |xn| for x = {x,} € £o(E). Hence,
the assumption E is countable implies these random vectors on (§2, F, P) are £, (E) valued in the sense used in [13], so for
the convenience of the reader we freely quote from this single source a number of results used in the proof. However, from a
historical point of view it should be observed that an important first step in these results involves the Hoffmann-Jergenesen
inequalities obtained in [6], and for series and a.s. normalized partial sums of sequences of independent random vectors,
some results of a similar nature appeared in [7,8].

Notation 2. Let X take values in a Banach space B with norm ||x|| = supp [f (%), x € B, where D is a countable subset of
the unit ball of the dual space of B and f (X) is measurable for each f € D. Then, we are in the setting used in Chapter 6 of
Ledoux and Talagrand [13], and the ,-Orlicz norm of || X|| is given by

ool (2] ]

Corollary 6. Let H,; :== {Hpin : h € E}, i = 1, 2, be the stochastic processes in (55) and (56), and for i = 1, 2
[IHn,illoo = sup [Hyi,nl- (72)
heE
Then, under the assumptions of Theorem 2 and that E is countable, we have

k= sup E(|[Hpillo) < oo, (73)

n>1,i=1,2
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and there exists an absolute constant k, < oo such that for any r > 0

supP(sup Vn|Dy(h) — D(h)| > 1) < 4exp{—ar?} (74)

n>1

provided « > 0 is sufficiently small that

Vaaky(k+2) < 1. (75)

Proof. From (63)
r r
P(sup /aIDy(h) —D()| 2 1) < P (IHnlle = 5 ) +P (IHnzlle = ).
€E

Hence, Markov’s inequality implies

P(SUP VnIDy(h) = D(h)| > 1) < exp{—ar }X:E(e><13~{40t||1‘1nzII2 D,

i=1

and (74) holds provided « > 0 is sufficiently small that

Vaa sup |[[Hyilloo,y, <1, (76)
n>1,i=1,2

where we write ||Hp i||o0,y, to denote the yr,-norm of ||Hy i|loc. Now Theorem 6.21 of Ledoux and Talagrand [13] implies
there exists an absolute constant k, < oo such that

n Y; 2 %
IHn,illoo.yy < ka2 | ECIHnilloo) + (Z —+ ) : (77)
j=1 Vn 00,92
where {Y; : j > 1} are independent, mean zero, £, (E) valued random vectors with Y; = {I(X; > h) — P(X; = h) : h € E}
forj > Twheni = l,andY; = {I(X; < h) = P(X; < h) : h € E}forj > 1wheni = 2. Since ||Yj[lc < 1, we have

Yi 1 . .
||ﬁ||oo,,,,2 < Jwd and (77) implies

1
1 2
Hailloos, < ko [E<||Hn,f||oo)+ <log(2)> } (78)

Now from (76) and (78) we have (74) for & > 0 sufficiently small that

Vaak, |:k+ (10g(2)> } <1, (79)

provided (73) holds.
Hence, to complete the proof we must prove k < 00.To accomplish this we first show

SU?E(”Hn,l”oc) < Q. (80)
n=

This follows from Proposition 6.8 of Ledoux and Talagrand [13] applied to the partial sums Sy of the {Y; : j > 1} withp =1
provided we show sup,,.; to,n < 0o, where

- >t) ;} ne 1. (81)

Moreover, E countable implies Ottaviani’s inequality is available as in Lemma 6.2 of Ledoux and Talagrand [13], and hence
foreveryu,v > 0
P ( > v)

>u+v>
0o 1—maxP( S"

1<k=<n

S
to,n:inf{t>O:P<max K

1<k<n

Sk

NG

(82)

P [ max
1<k<n

5
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Furthermore, since % = Hp; forn > 1, and the proof of Theorem 2 implies {H, ; : n > 1} satisfies the central limit
theorem in £, (E), the Portmanteau Theorem (applied to closed sets) implies there exists ug < oo such that for u > ug

(IR
Jml. =) 2
for all m € [mg, o0). Therefore, there exists u; € [ug, 00) such that
SUPP< S Zlh)fl,
m>1 V| o 2
and hence
sup maxP(‘S"_Sk zul) < sup maxP(Hsm Zu1> 51.
n>1 1=k<n N n>11=m=n V| o 2

Thus (82) implies for all v > 0 and n > 1 that
S

Sn
P | max >u4+v)<2P||—= >v]. 83
<1sksn NZI N )‘ (Hdﬁ N > &

Again, by the central limit theorem there exists v; < oo such that v > vy implies
Sn

>y )< 1,
Vil T ) T 8
and hence we see from (83) that sup,~qtp, < u; + vy < oo wheni = 1 (and the partial sums come from the {Y; :

j = 1}). However, the same proof applies when i = 2 and the partial sums are formed from {Z; : j > 1}, where Z; =
{I(X; = h) = P(X; < h) : h € E} forj > 1. Hence the proof is complete. O

2supP<

n>1 00

5. Half-region depth over finite subsets

In order to make half-region depth more amenable to discrete computations we now define half-region depth over finite
sets, and prove a uniform consistency result in this setting.

As before we assume X := {X(t) = X;: t € T} is a stochastic process on the probability space (£2, #, P), all of whose
sample paths are in M(T).

If h € M(T) we define the half-region P-depth of h with respect to] € T to be

Dy(h) = min{P(X >; h), P(X <, h)}, (84)

where hy >; h, (hy % hy) holds for functions hq, h, defined on T if hy(t) > hy(t) (hy(t) < hy(t))forallt € J.

Let X1, X, ... be i.i.d. copies of the process X, and assume X, X1, X5, ... are defined on (£2, ¥, P) suitably enlarged, if
necessary, and that all sample paths of each X; are in M(T). Then, the empirical half-region depth of h € M(T) over a set
J € T is given by

1 E 1<
Day(h) = min § — % 1= h), — 310G h) ¢ (85)
j=1 j=1

For h € M(T) and ] any finite subset of T, the probabilities in (84) are defined, and the events in (85) are in F. Therefore,
the classical law of large numbers implies with probability one

Jlim Dy () = Dy ()] = 0. (86)
The next theorem refines (86) to be uniform over h and J, as long as ] € ,, where for each integerr > 1,
Fr=UCcT:# =r},
and #] denotes the cardinality of the set J.

Theorem 3. Let X, X1, X3, ... be i.i.d. copies of the stochastic process X = {X(t) : t € T} defined on the probability space
(82, F, P), and all of whose sample paths are in the linear space M(T). Let

C={Cy:teT,yeR} (87)

where G,y = {z € M(T) : z(t) <y}, and assume the empirical CLT holds with respect to the probability .£L(X) over C. Then, for
every integer r > 1 fixed we have with probability one that

lim [ sup sup |Dy;(h) — Dy(h)|]* = 0. (88)
=00 heM(T) Jegr
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Moreover,

lim sup P([ sup sup \/ﬁan’](h) —Dy(W[]* = u)=0. (89)
U—=00 n>1 heM(T) Jegr

Remark 6. The implication in (88) does not follow from the corresponding finite dimensional result for half-region depth
since the finite set J is not fixed, but it is also the case that the assumption of an empirical CLT over € is non-trivial.
Fortunately Kuelbs et al. [9] and Kuelbs and Zinn [ 11] provide many examples of processes that satisfy this empirical CLT, and
to which Theorem 3 applies. These include a broad collection of Gaussian processes, compound Poisson processes, stationary
independent increment stable processes, and martingales. Moreover, if ] : ® — ¢, then

[ sup sup [Dnj@)(h) — Dyey(h)[1* < [ sup sup |Dy;(h) — Dy(h)[T",
heM(T) 0e® heM(T) J€gr

and hence it is immediate that (88) holds when the choice of ] is arbitrarily parameterized by ® aslongas#J(6) <r,6 € ©.
In fact, the choice of subsets J(#),6 € ©, can be completely random. For example, let ® = T" be the r-fold product
of T, assume Q is a probability on (®, o) where Fo makes the r coordinate maps on T" to T measurable, and for
6 =(ty,...,t) € O letJ(0) denote the subset of T defined by 0 to be

J©) ={t1,.... t:}.

Since some of the points in & may be repeated, we have #J(#) < r and J(#) € g, for all & € ©. Furthermore, if Pis any
probability on (£2 x ®, F x Fg) with marginals P and Q, then the measurable cover function

[ sup sup [Dp ) (h) — Dy (MI]*
heM(T) 0e®

computed on (2 X ©, F x Fp, 13) is less than or equal to

[ sup sup|Dy;(h) — Dy(W)|]*
heM(T) Jegr

computed on (£2, #, P). Hence (88) of Theorem 3 implies consistency in this setting as well.

Remark 7. Theorem 3 differs from [2,3] in two significant ways. In those papers the authors consider one dimensional
projections and those projections are i.i.d., whereas here the depth is computed using multi-dimensional marginals without
a need for independent observations since our results are uniform over all finite dimensional projections with dimension
bounded by r.

Proof. Since (31) holds, we have
[Dnj(h) — Dy(h)| < An(, h) + Bn(, h),

where
-ll’l
A, R == IX; = h) —P(X>h
. h n;m,) X = h)

and

1 n
BuJ.h) = |~ 310G %y h) = PX %y b))
j=1

Therefore, sub-additivity of measurable cover functions implies (88) once we verify that with probability one

lim [ sup supA,(J, )]* = lim [ sup supB,(J, h)]* =0.
=0 heM(T) Jegr N=>0 heClo,1]1Jedr

Fix an integer r > 1, and set

¢y, ..., u) = min{uy, ..., u.}.
Then, forJ € g,,h € M(T),andj =1, ..., r,define
f} = Ictj.h(tj)’

which implies

D],h = {Z c M(T) ZZ(t) < h(t),t E]} = 0;21 ij,h(fj)’
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and

Ioyy = (.- ).

Since € is a Donsker class with respect to P and r > 1 is fixed, Theorem 2.10.6 of van der Vaart and Wellner [16] implies
D ={Djn:J] € Fr,heMD}

is also P-Donsker with respect to P. Thus by Lemma 2.10.14 of van der Vaart and Wellner [ 16] we have almost surely that

lim [ sup supB,(J, h)]* =0. (90)
=00 heM(T) Jegr

Since D = {Dﬁh : Dy € g} is then also a Donsker class, the above argument implies that

lim [ sup supA,(J, h)]* = 0. (91)
=00 heM(T) Jegr

Combining (90) and (91) implies (88).
Since both O and P are P-Donsker, the proof of (89) follows as in the proof of (59) using appropriate modifications of
(63), (64), and (65) to apply to J half-region depth. O
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