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Abstract

We develop a hidden Markov random field (HMRF) framework for distributed signal processing in sensor-
network environments. Under this framework, spatially distributed observations collected at the sensors form
a noisy realization of an underlying random field that has a simple structure with Markovian dependence.
We derive iterated conditional modes (ICM) algorithms for distributed estimation of the hidden random
field from the noisy measurements. We consider both parametric and nonparametric measurement-error
models. The proposed distributed estimators are computationally simple, applicable to a wide range of sensing
environments, and localized, implying that the nodes communicate only with their neighbors to obtain the
desired results. We also develop a calibration method for estimating Markov random field (MRF) model
parameters from training data and discuss initialization of the ICM algorithms. The HMRF framework and
ICM algorithms are applied to event-region detection. Numerical simulations demonstrate the performance
of the proposed approach.

I. INTRODUCTION

ECENT advances in integrated sensor and radio-frequency (RF) technologies, wireless communi-
Rcations, and signal processing allow development of sensor-network systems composed of low-cost
sensor-processor elements (nodes) jointly working to collect and analyze noisy spatio-temporal measure-
ments. Large-scale sensor networks that can monitor an environment at close range with high spatial and
temporal resolutions are expected to play an important role in various applications, including assessing
“health” of machines, aerospace vehicles, and civil-engineering structures; environmental, medical, food-
safety, and habitat monitoring; energy management, inventory control, home and building automation, see
also [1, Ch. 1.3] and [2]-[8]. Each node will have limited sensing, signal processing, and communication
capabilities, but by cooperating with each other they will accomplish tasks that are difficult to perform
with conventional centralized sensing systems [7], [8]. Sensor networks are expected to reveal previously

unobservable phenomena in the physical world [8] and are currently attracting considerable attention.

TThis work was supported by the National Science Foundation under Grant CCF-0545571 and the NSF Industry-University
Cooperative Research Program, Center for Nondestructive Evaluation (CNDE), Iowa State University.
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Markov random field (MRF) models have been widely used to describe spatially distributed random
phenomena, see e.g. [9]-[11]. In this paper (see also [12]), we propose a hidden Markov random field
(HMRF) framework for distributed signal processing in sensor-network environments. Under this framework,
spatially distributed observations (collected at the sensors) form a noisy realization of a random field with
Markovian dependence structure.! Previous work on distributed HMRF based signal processing for sensor
networks focused on developing message passing algorithms for linear Gaussian measurement-error and
MRF process models with known model parameters, see also the discussion in Section II-A. In contrast, our
HMREF framework allows for general measurement and random-field models with unknown measurement-
error model parameters. The unknown measurement-error model parameters vary from one node to another,
thus taking into account imperfect calibration of the sensors at different nodes and permitting distributed
localized processing and nonparametric measurement-error modeling. The nonparametric measurement-error
models that we employ are important in practical applications where accurate parametric models are difficult
to find, especially in large-scale sensor networks operating in time-varying environments [15]-[17].

We derive iterated conditional modes (ICM) algorithms for distributed estimation of a localized phe-
nomenon (modeled as a hidden random field) from noisy measurements. In particular, the proposed ICM
algorithms are designed to increase the predictive likelihood of the hidden field.> The underlying distributed-
processing paradigm ensures robustness and reliability of the proposed approach. We demonstrate our ap-
proach by applying it to event-region detection, which is an important task in wireless sensor networks [14].
We consider parametric Gaussian and nonparametric (empirical likelihood and entropy) measurement-error
models and utilize an autologistic MRF process model for event-region detection.

The HMRF framework is introduced in Section II and general ICM method is presented in Section III.
We discuss the event-region detection problem in Section IV where we first propose suitable measurement-
error and random-field models (Sections IV-A and IV-B) and then derive the corresponding ICM detection
algorithms (Sections IV-C and IV-D). Initialization of the ICM iterations is discussed in Sections IV-C.1 and
IV-D.1. In Section V, we develop a pseudo predictive likelihood (PPL) calibration method for estimating MRF
model parameters from training data and specialize it to the event-region detection problem. This method
is based on maximizing the product of the full conditional predictive probability density or mass functions
(pdfs/pmfs) of the random-field values at all the nodes. In Section VI, we evaluate the performance of the
proposed detection algorithms via numerical simulations. Concluding remarks are given in Section VII.

"Here, Markovian dependence implies that, given random-field values at all other locations, the conditional distribution of the

random field at any location depends only on the field values at the neighboring locations, see also (2.7) in Section II.
2See [13, Ch. 16.3] for the definition of predictive likelihood and examples of its use.
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II. HIDDEN MARKOV RANDOM FIELD FRAMEWORK

Assume that each node (sensor) k& € {1,2,..., K} in the network collects a vector of measurements

Y = k(1) yk(2), -,y (N)]T (2.1a)

where N denotes the number of observations collected by each node k and “7” denotes a transpose. Define

also the vector of all measurements:

y=[yl,ys,. .., yxl’. (2.1b)

We assign a hidden random variable [ to each node k and adopt the following hierarchical model for the

collected observations:

o Ok, k=1,2,..., K form an MRF describing the process model:

B =151,5, ..., 0k 2.2)

« Given the MRF (3, y,, are conditionally independent random vectors with pdfs or pmfs p, 5, (y|5k; vk)

that depend only on [
K
Pyipy | B:0) = [ ] py,16. Wi | Bs vr) (2.3)
k=1

describing the data (measurement-error) model.

Here, vy, is the vector of unknown measurement-error model parameters at the kth node and
T ,T 1T
v=[v],Vy,..., V%] . (2.4)

Note that the measurement-error model parameters v vary with the node index k, taking into account
imperfect calibration of the sensors at different nodes. The above framework can account for both discrete
and continuous measurements and random fields. The parameters vy may be used to model the entire
measurement-error probability distribution py, |5, (yy, | Bk; Vi) in a nonparametric manner, provided that the
elements of y,, are conditionally independent, identically distributed (i.i.d.); see Section IV-A.2.

Our goal is to estimate the MRF 3 from the observations y;, k = 1,2, ..., K. We define the probability
distribution of 3 via a conditionally-specified model suitable for distributed neighborhood-based signal
processing. Before formally defining an MREF, let us introduce some terminology and notation. Throughout
this paper, we assume that the neighborhood of a node k [denoted by N (k)] consists of all the nodes

le€{1,2,..., K} that are within a cutoff distance d from that node, i.e.

Nk ={l:||rp — | < dand | £k} (2.52)
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Fig. 1. A graphical representation of an HMRF model.

where

e = mill = /(e = v (ri — 1)

and 7, and r; are the kth and [th node locations in Cartesian coordinates. Define the set of random-field

values in this neighborhood:
Ns(k) = {61, 1 € N(k)} (2.5b)
and the conditional pdfs or pmfs of 3 given the neighboring MRF values:

PoNs) (Be I N (K)),  k=12,... K. 2.6)

Then, the Markov property of an MRF 3 implies that, for all £ = 1,2,..., K, the conditional pdfs/pmfs of

Ok given the random-field values at all other nodes satisfy

P16 1k} (B {8 L# k) = pgani e (B [IN3(K)). (2.7
A. HMRFs as Probabilistic Graphical Models

MRF and HMRF models belong to the (broader) class of probabilistic graphical models (see e.g. [11], [18]—
[22] and references therein) and can be formulated using an undirected mathematical graph whose nodes
correspond to the random variables in the field and its edges define the underlying neighborhood structure.
In [18] and [20], graphical-model based extended message passing® algorithms are developed for inference
on HMRF models with linear Gaussian measurement-error and MRF process models and known model

3See [22] for a detailed exposition on message passing algorithms for graphical models.
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parameters, embedded-trees and embedded-triangles algorithms are developed for this scenario in [19], [20],
and [23]. A belief propagation approach is proposed in [24] for multi-hypothesis testing of global phenomena
in sensor-network environments. Fig. 1 shows a graphical representation of an HMRF model, where the filled
circles depict the hidden random field (and their locations correspond to the node locations) and hollow circles
the observed data. The edges in Fig. 1 describe the (conditional) statistical dependence between the nodes in
the graph, as inferred from the specifications in (2.5a) and (2.3).

In the following, we present a distributed algorithim for computing maximum predictive likelihood estimates

of the random field 3.

III. ICM RANDOM-FIELD ESTIMATION

We propose an ICM algorithm for estimating the MRF (3 where each node k € {1,2,..., K} performs the

following steps:

(ICM1)  collects the current estimates of [3; from its neighborhood N (k);

(ICM2)  updates its estimate of (35 by maximizing the conditional predictive log likelihood:

Li,(Br | Na(k)) = H}ﬁx{lnl’yklﬁk (gl Br; vi) Y + Inpg, a0 (Br [ N3 (K)) (3.1

with respect to [g;

(ICM3)  broadcasts the obtained estimate of (j to the nodes in the neighborhood N (k).
When applied to each node £ in turn, this procedure defines a single cycle of the ICM algorithm. The
cycling is performed until convergence, i.e. until the estimates of [ do not change significantly for all
ke {1,2,...,K}. The ICM approach is computationally simple and applicable to a wide range of sensing
environments. It does not require careful treatments of loops in the inference graphs, constructing junction
trees etc. It is also localized, implying that the nodes communicate only with their neighbors to obtain the
desired results. Localized algorithms are robust to node failures and the communication overhead scales well
with increasing network size, see [2] and [3]. Distributed localized algorithms and architectures also facilitate
rapid data processing and information collection, and are well-suited for systems that utilize sleep modes to
conserve energy [25].

Denote by pg(8) the joint pdf/pmf of (1, [s,. .., Bk. Then, applying (ICM1)—(ICM3) at each node k

increases the joint predictive log-likelihood function of 3 (see also [13, Ch. 16.3]):*

L(B) = max{In[pyg(y|B; v)]} + In[ps(B) ] (3:2)

*Note that the conditional predictive log likelihood Ly (Br | N3(k)) in (3.1) follows from the joint predictive log-likelihood L(3)
by substituting the identity ps(8) = P, w5 k) (Br [N5(K)) - Davs (k) (NV3(k)) into (3.2) and keeping the terms that depend on .
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in a stepwise-ascent manner. In particular, combining the stepwise-ascent maximization approach with the
Markovian property of pg(3) leads to the distributed localized iteration (ICM1)—(ICM3). In general, this
iteration converges to a local maximum of L(3). However, if the conditional predictive log likelihoods in
(3.1) are unimodal in () (as in the HMRFs with linear Gaussian measurement-error and MRF process
models studied in [18]-[20] and [23]), then the ICM algorithm converges to the global maximum of L(03).
Interestingly, its convergence to a local maximum of L(3) [when initialized with the local maximum
likelihood (ML) estimates of the (3;’s] may be preferred compared with finding the global maximum because
MRFs often have undesirable large-scale properties [10].

The predictive log likelihood in (3.2) has a Bayesian interpretation. Here, we view pg(3) as the prior
distribution of the hidden field B and assign a flat prior distribution: p,(v) o 1 to the measurement-
error model parameters v. Then, maximizing L(3) in (3.2) yields a mode of the joint posterior pdf/pmf of
the unknown parameters. We emphasize that the purpose of the proposed method is to resolve ambiguous
measurements. Otherwise, if the data provides strong evidence about the hidden field 3, the influence of the
prior pg(3) disappears, which is true for Bayesian methods in general. The ICM approach to finding modes
of joint posterior distributions dates back to the seminal paper by Lindley and Smith [26, Sect. 4], see also
[27, Ch. 10.2.1] and [28, Ch. 6.2.2]. The iteration (ICM1)—(ICM3) generalizes the ICM algorithm for image
analysis in [9, Ch. 7.4.3] and [10] and adapts it to the sensor-network scenario by allowing for more general
neighborhood models and unknown measurement-error model parameters that vary from node to node. The
latter extension is key for sensor-network applications where the nodes are not perfectly calibrated and data
processing should be performed locally as much as possible. It also allows nonparametric measurement-error
modeling, as discussed in Section IV-A.2.

In the following section, we demonstrate the proposed approach by applying it to event-region detection.

IV. EVENT-REGION DETECTION USING THE HMRF FRAMEWORK AND ICM METHOD

We utilize the proposed HMRF framework and ICM method to efficiently remove false alarms in event-region
detection tasks. Here, our goal is to detect a region in the environment in which an event of interest has
occurred. For example, if the network is capable of sensing concentration of chemical X, then it is of interest
to answer the following question [14]: “In which regions in the environment is the concentration of chemical
X greater than a specified level?”

We first describe measurement-error and process models suitable for event-region detection (Sections IV-A
and IV-B) and then derive the corresponding ICM algorithms for event-region detection (Sections IV-C and

IV-D).
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A. Measurement-Error Model

In this section, we consider hidden fields that take two discrete values

e [, = 0 (signal absent) and
e [, =1 (signal present)

and utilize a simple signal-plus-noise measurement-error model for the measurements yy (1), yx(2), ..., yx(N)

collected at node k € {1,2,...,K}:

Yr(t) = pe(B) +ex(t), t=1,2,...,N (4.1a)
where
e ux(0) = 0 (signal absent),
e k(1) is the (unknown) nonzero signal, and
e er(t),t=1,2,..., N is zero-mean i.i.d. noise.
We denote the pdf/pmf of the noise e (t) by pnoise, (€x(t)). Consequently, given Sk, yx(1), yx(2), - .., yr(NV)

are conditionally i.i.d. random variables with the joint pdf/pmf

N
Py (k| 55) = T ] puoices (e(t) = x(5) (4.1b)
t=1

see also (2.3) for a full measurement-error model specification.
1) Gaussian Measurement-Error Model: Under the Gaussian measurement-error model, we assume that
the noise pdf at node k is zero-mean Gaussian:

1
Prnoisey, (ek(t); O-I%) = O‘k\/ﬁ - eXp [ - 6%@)/(20’%)} 4.2)

where a,% is the unknown noise variance at the kth sensor. Here, the measurement-error model parameters
are vy, = o7 for By = 0 and vy = [y (1), 07)7 for B = 1.

2) Nonparametric Measurement-Error Models: We now consider a scenario where the noise probability
distribution pyoeise, (+) at node k is unknown and utilize a class of nonparametric measurement-error models.
This scenario is important in practical applications where accurate parametric measurement-error models are
difficult to find, as is often the case in large-scale sensor networks operating in time-varying environments
(see e.g. [15]-[17]). To simplify the notation, we omit the dependence of the mean value iy on (5 throughout
this section. Clearly, the discussion on unknown p; corresponds to the case where py, = (1) # 0.

Assume that, given G, yr(1), yx(2),...,yx(IN) are conditionally i.i.d. random variables with mean pj, =

i (Br) where each yg(t) is assigned a multinomial probability py,. We then construct the following non-
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parametric log-likelihood function of the mean py at node k:

N
le(pr) = Z In pp. ¢ (pr) 4.3)
=1

where py(pr), t = 1,2,..., N are estimates of the probabilities py;, t = 1,2,..., N computed by mini-
mizing the Cressie-Read power divergence’ between the discrete distribution defined by Pt t=1,2,...,N
and the discrete uniform distribution on t = 1,2,..., N (see [30], [31], and [32, Ch. 3.16]):

- S [(Nppg) ™ — 1]
min
prest=12,...,.N Nk (1 + Iﬁ;)

(4.4a)
subject to the constraints

N N
> prelue®) — ] =0, pey =0, > pre=1. (4.4b)
t=1 t=1

Here, —00 < k < 00 is a known constant [defining a particular choice of the discrepancy measure in (4.4a)]
and the degenerate cases x € {0, —1} are handled by taking limits.

In the following, we focus on the non-trivial case where®

My = i t) < px < £) = Ykaiax 4.5
Yk, se(iol yr(t) < pr B Yr(t) = Ynia (4.5)
and on the limiting values of x (i.e. Kk = 0 and kK = —1), which correspond to commonly used least favorable

distribution families [32, Chs. 9.6 and 9.11] and lead to the empirical likelihood and empirical entropy
measurement-error models discussed below. (The concept of a least favorable family was introduced by Stein
in [33].)

Empirical Likelihood: 1f x = 0 in (4.4a), (4.3) simplifies to the following concentrated empirical log-

likelihood function” of the mean s, at node k:

N N N
(i) = {  max N(Zlnpk,t)\Zpk,t[yk@)—uk]=o,pk,tzo,2pk,t=1} (4.6)
t=1 t=1

t=1,2,...,
Pkt 14y t=1

which can be viewed as a multinomial concentrated log likelihood [34]. In this case, the measurement-error

model parameters are v = [Pg,1, Pk 2: - - - Pk,N) L for B, = 0 and vg = [fig, Pr1, Pk2s - - - PN for B, = 1,
where the multinomial probabilities py, 1, g2, . .., Pk, N are constrained to satisfy the conditions in (4.4b), see
also (4.6).

Maximizing lj(ux) with respect to py yields
max [l ()] = —NIn N (4.7a)
M

>The Cressie-Read divergence is closely related to the Rényi divergence [29], see also [30] and [31].

Note that the optimization problem in (4.4) does not have a solution if pr < Yrain OF fix > Yrmax. In such cases, we
set Ix(ur) = —oo by convention. If yx v = Yk,max = pik, We take lg(pux) = —NInN and if up = yrwmn < Yk,max OF
Uk = Yk,MAX > Yk,MIN, WE SEL lk(,uk) = —o0.

7See also [32] and [34] for the definition and properties of the empirical likelihood.
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which follows by noting that, subject to Zi\; 1 Pkt = 1, the log-likelihood function Zivz 1 Inpy. ¢ is maximized
by choosing the discrete uniform distribution of the observations (i.e. pp¢ = 1/N,t = 1,2,...,N). This

choice yields the nonparametric maximum likelihood estimate (NPMLE) of pu:

N
1
U= ;yk(t) = argmax l(ju) (4.7b)

also known as the bootstrap estimate of pj [34]. In Appendix A, we compute (4.6) by solving a one-

dimensional convex dual problem:

l(u) = =N In N + min S (A; ) (4.82)
where
N
Sk ) = — {1+ Mg [y (1) — pun]} (4.8b)
t=1

is a convex function of A\y. To ensure that the estimates of the multinomial probabilities remain in the allowed
parameter space, the search for )\; that minimizes (4.8b) should be constrained to the interval (see Appendix

A):
1-N! 1-N!
S e (4.9)
Bk — Yk max BE — Yk N

and can be efficiently performed using the damped Newton-Raphson iteration®:

}2

>—1 ()
(4)

N
A Z 30 4 g0 (Z [k (t) —
=1 L+ A [ye(t) —

=N () — )
where the damping factor 0 < (5,(:) < 1 is chosen (at every step ¢) to ensure that (4.8b) decreases and

)\](Ci—&-l)

(4.10)

remains within the interval specified by (4.9).” The above iteration converges to the unique solution
A = Ae(pk)-

In Appendix A, we sketch a proof that the empirical-likelihood approach employs a least favorable
nonparametric distribution family for estimating pj and derive the Cramér-Rao bound (CRB) for estimating
i under the empirical likelihood measurement-error model. Assuming the discrete uniform distribution of

the observations, this CRB simplifies to:

—[Z 1 dzlk(yk)]_l _ i 4.11)

8See e.g. [35, Ch. 9.7] for an introduction to the Newton-Raphson algorithms. To simplify the notation in (4.10) and later in (4.16),
we omit the dependence of )\S) and 5,@ on fi.

In particular, we start with 6;?) = 1 and check if (4.8b) decreases and )\,(:H) remains within the interval (4.9). If these tests fail,
we keep halving 6,(;) until they are satisfied.
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where
st = Sox— i (4.12a)
1 N
Sok = w5 D Uk(D) (4.12b)
t=1

and ¥, has been defined in (4.7b).

Empirical Entropy: For xk = —1, (4.4a) reduces to

N
L ;pk,t In(Npp.) (4.13)
subject to the constraints in (4.4b). In (4.13), we minimize the relative entropy'® between the multino-
mial distribution defined by the probabilities py;, ¢t = 1,2,..., N and the discrete uniform distribution
ont=12,...,N, yielding the empirical entropy estimates py;(ur), t = 1,2,..., N of the multinomial

probabilities. It can be shown that pj () have the following form (see Appendix B):

A t
Pr(pk) = NeXp[ ey ®l gy (4.14)
> r—1 €xP[ Ak (1) yr(7)]
where A\ (uy) is obtained by minimizing
Ch( Ak i) ZGXP{/\k yk(t) — ]} (4.15)

with respect to Ag. Note that (i (Ag; k) is a convex function of A, and can be efficiently minimized using

the damped Newton—Raphson iteration:

AGHD — 50 {Zexp O] () — ) Zepr,i uk(0)] - [ys(t) — ], (4.16)
t=1

(4)

Here, the damping factor 0 < 5k < 1 is chosen to ensure that (4.15) decreases. Finally, we compute the

nonparametric log-likelihood function of uy by substituting (4.14) into (4.3):

N
i) = N - M) T = N - In {7 explv(ue) (9] . @.17)
t=1

The above empirical-entropy approach is closely related to the nonparametric tilting in [37, Sect. 11] and
[38, Ch. 10.10]. It is also known as the empirical exponential family likelihood [39, Ch. 10] because it can be
derived by constraining the probability distribution of yx(1),yx(2),...,yx(IN) to belong to the exponential
family of distributions.

In [37, Sect. 11], Efron presented the CRB for pj; under the empirical entropy measurement-error model
and used it to argue that the empirical-entropy approach employs a least favorable family for estimating .
Assuming the discrete uniform distribution of the observations, the expression for this CRB simplifies to
(4.11), see Appendix B and [37, eq. (11.10)].

ORelative entropy, also known as Kullback-Leibler distance, is defined in e.g. [36, Ch. 2.3].
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B. Autologistic MRF Process Model

Assume that each node k& makes a binary decision about its current status, i.e. it decides between the hypothesis
Ho ;. : (signal absent, 8 = 0), corresponding to i, = 0
versus the one-sided alternative
Hy @ (signal present, 3;, = 1), corresponding to py > 0.
This formulation is suitable for detecting event regions with elevated concentrations of chemicals, see the
example at the beginning of Section IV. In this example, we restrict the parameter space of the mean signal
ui to the set of non-negative real numbers. To describe the binary MRF for event-region detection problems,

we adopt the autologistic MRF process model specified by the conditional pmfs (see [9, Ch. 6.5.1]):
exp (awB + Br - Dien(r) hi B1)

P k) (Br | N (k) = (4.18a)
Br|Ns (k) 8 1+ exp (ak i Zle}\/(k) oy ﬁl)
for k = 1,2,..., K, where a;, and ¢ are spatial-trend and spatial-dependence MRF model parameters.
Furthermore, we utilize the following simple spatial trend and dependence models:
o constant spatial trend (independent of k):
ap = a (4.18b)

e homogeneous spatial dependence with equal evidence from each neighbor:

— n, Hrk_""l” <d
et { 0, llre—mll>d (4.18¢)

where d is the cutoff distance, see also Section II.
In event-region detection problems, 7 is a positive constant describing the field strength. This spatial-
dependence model quantifies the notion that the random-field values at the nodes that are close (in terms of
the spatial distance) should be more similar than the values at the nodes that are far apart. More complex
spatial dependence models can be developed along the lines of [9] (for isotropic dependence) and [40] (for
anisotropic dependence).

In applications where the cutoff distance d is approximately equal to the radio-transmission range of the
sensor elements, the neighborhood N (k) consists of those nodes with which k& can communicate directly.
Then, we can determine the neighborhoods without utilizing the node location information. However, the
assumption that the cutoff distance coincides with the communication range may be impractical. In addition,
the effective cutoff distance may vary slightly from one node to another.

In the following, we specialize the general ICM algorithm in Section III to the event-region detection

problem using the measurement-error model in Section IV-A and process model in (4.18a)—(4.18¢).
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C. ICM Detection for Gaussian Measurement-Error Model

We first define the indicator function

. 1, z€A,
(@) _{ 0, otherwise (@.19)

Under the Gaussian measurement-error and autologistic process models, Step (ICM2) in the ICM algorithm

simplifies to selecting B = 1 if
2

N s o
Le(1|N3(k)) = Le(0| N3(k) = 5 -In (;’i’“) 000y @) Far+ Y by (4.20a)
leN (k)
N S0kY . _
- S (82) 000y (Tk) + @ + 1 (4.20b)
> 0 (4.20¢)

and selecting 3 = 0 otherwise; see Appendix C for details of the derivation. Here,
uw= Y B 4.21)
leN (k)
is the number of neighbors of & reporting the presence of signal and N (k), 7., sz and 537 ;. have been defined in
(2.5a), (4.7b), (4.12a), and (4.12b). Equation (4.20b) follows by substituting (4.18b) and (4.18c) into (4.20a).
The first term in (4.20b) is the one-sided t-test statistic for the mean ;. (based on the “local” measurements
collected at node k), whereas the second and third terms account for the spatial trend and spatial dependence
effects introduced by the MRF model.
1) Initialization: To obtain initial decisions at each node k, we ignore the neighborhood dependence and

apply the local one-sided ¢ test for the mean puy: select G = 1 if

Sg,k . _
2 'Z[O,oo)(yk) 2> TG (4.22a)
k

and select 3, = 0 otherwise. This test is also the generalized likelihood ratio (GLR) test for the hypothesis
testing problem described in Section IV-B. Denote by B(0.5(N — 1),0.5) the central beta distribution with
parameters 0.5(N — 1) and 0.5. We select the threshold

_ -1
TG = Oy 5(N_1),0.5,2Pea (4.22b)
to guarantee a specified probability of false alarm Pra. Here, by 5(n—1),0.5, 1S defined using
P[B < bos(N—-1),05p] =P (4.22¢)

where (3 is a B(0.5(N — 1),0.5) random variable.



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, 2006 13

D. ICM Detection for Nonparametric Measurement-Error Models

Under the nonparametric measurement-error models in Section IV-A.2, the condition (4.5) implies that one-

sided detection in Section IV-B will be meaningful only if
Yk max >0 (423)

with equality implying ¥k uix = Ykmax = 0. For the empirical likelihood and entropy measurement-error

models, Step (ICM2) simplifies to selecting [y = 1 if

Li(1] 8 € N3(k)) — Li (0] 8 € N5 (k)

= max (1 (111)] = 16(0) + Inpg, v, (i) (LN (R)) — Inpg, v, (x) (01N () (4.242)
— [N N = ,(0)] - ijo,00) (Ti) + @ + n (4.24b)
> 0 (4.24¢)

and selecting ; = 0 otherwise, see Appendix D. Here, the nonparametric log likelihoods [;(0) for the
empirical likelihood and entropy models are computed using (4.8) and (4.17), respectively.

1) Initialization: We now discuss the initialization of the ICM iteration under the empirical likelihood and
entropy measurement-error models. We propose the following local GLR tests that ignore the neighborhood

dependence: select G = 1 if

V2[=NIn N — 1[,,(0)] - ijg o) (Tk) = TP (4.252)

and select 5, = 0 otherwise. The threshold mvp which guarantees a specified probability of false alarm Pga

can be approximately computed by solving (see Appendix E):
®(7np) =1 — Pra (4.25b)

where ®(-) denotes the cumulative distribution function of the standard normal random variable. The above
approximation is based on the Wilks’ theorem for the empirical likelihood [32, Th. 2.2], [34, Sect. 2.3] and
similar results for empirical entropy [41], [42], derived under the assumption that N — oo, see also Appendix
E. Therefore, its accuracy improves as the number of observations per sensor increases.

In the above ICM algorithms, the nodes exchange binary messages (8 = 0 or 5 = 1) to inform
neighbors about their status; the communication cost of this exchange is low, which is important in most

practical applications that require energy and bandwidth efficiency [7].
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V. MRF CALIBRATION

Assume that training data is available containing both the observations y;, ¥ = 1,2,..., K and the true
values of the MRF 3. We develop a calibration method for estimating the MRF model parameters from the
training data. Denote the vector of MRF model parameters by w. To emphasize the dependence of the local
and global predictive log-likelihood functions in (3.1) and (3.2) on w, we use Ly (ﬂk | Ns(k); w) and L(8;w)
to denote these functions throughout this section. Similarly, we use pg, v, (k) (ﬂk | Ns(k); w) to denote the
conditional pdfs in (2.6).

We denote
explL(Biw)] = _exp[L(Biw)]
[ exp[L(b;w)] db >pexp[L(b;w)]

as the “predictive” pdfs or pmfs of 3, see [13, Ch. 16.3]. Then, we may compute maximum “predictive”

G.D

likelihood estimates of w by maximizing the expressions in (5.1). However, the denominators in (5.1) are
usually computationally intractable. Motivated by Besag’s pseudolikelihood approach in [9, pp. 461-463] and
[43], we construct a computationally tractable log pseudo predictive likelihood function:
[L Ns(k
Zl { xPILe (B | Np(k); )] } (5.2)
2 oeXp[Lk( |Nﬁ( )5 )]
and estimate the MRF model parameters w by maximizing L., (w) with respect to w. Here,
exp[Li (B | Np(k); w)]
Yoi—o explLi (i | N (k); w)]

is the full conditional predictive pdf/pmf of G;. The above calibration method applies to the general measurement-

5.3)

error and MRF models described in Section II.

Event-Region Detection: We now specialize (5.2) to the event-region detection problem, leading to

Lpp,(w) = const+a- (iﬁk) +n- <§:5kuk>
k=1 k=1

K
- Zln {1 + exp [Li (1| Np(k);w) — Li (0| Na(k); w) | } (5.4)

k=1
where const denotes terms that do not depend on the MRF model parameters w. Here, (5.4) follows by

substituting the autologistic MRF model (4.18a)—(4.18c) into (5.2) and neglecting constant terms. Under the
Gaussian and nonparametric measurement-error models in Section IV-A, the expressions Lj (ﬁk =1|p €
./\/'g(k:)) — Ly, (ﬁk =0|5 € Ng(k‘)) in (5.4) simplify to (4.20b) and (4.24b), respectively. To efficiently

compute the last term in (5.4), we utilize the following approximation: for large positive z,

In[1 + exp(z)] = =. (5.5)
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Interestingly, setting the data-dependent log-likelihood terms in (3.1) to zero and substituting the resulting

expressions into (5.2) yields the Besag’s pseudo log-likelihood function

K
Len(w) =Y Inpg, i) (Be | No(k);w) (5.6)
k=1

for estimating the MRF model parameters, see [9, pp. 461-463] and [43]. Note that (5.6) utilizes only
the MRF 3 and does not depend on the measurements y;, k = 1,2,..., K. Maximizing the pseudo log
likelihood (5.6) would yield reasonable estimates of the MRF parameters if the measurement-error model
parameters v1, Vs, . . ., Vg were known in the ICM estimation/detection stage. Note, however, that we assume
that v, vo, ..., vk are unknown and estimate them locally at each node, which is taken into account by the

PPL calibration method in (5.2).

VI. NUMERICAL EXAMPLES

To assess the performance of the proposed event-region detection methods, we consider sensor networks
containing K = 1000 nodes randomly (uniformly) distributed on a 50 m x 50 m grid with 1 m spacing
between the potential node locations. We assume that each sensor k£ collects N = 5 measurements corrupted
by i.i.d. zero-mean additive noise, unless specified otherwise (see e.g. Section VI-C). The noiseless field
containing two event regions is shown in Fig. 2 (left) and the sensor locations (with corresponding ideal
decisions) are shown in Fig. 2 (right). Here, the filled circles correspond to the nodes in the event regions.
The noisy measurements collected at the nodes k in the two event regions have means u; € {0.8, 1} whereas
the noise-only measurements collected at the nodes outside the event regions have zero means.

Throughout this section, we set the cutoff distance to d = 3 m and define neighborhoods according to
(2.5a). In all simulation examples, we estimated the MRF model parameters a (spatial trend) and n (field
strength) using the calibration procedure in Section V, where the calibration field and other details of our

implementation are given in Section VI-D.

A. Gaussian Measurement Scenario

In the first set of simulations, we generated the simulated data using the Gaussian measurement-error model
in Section IV-A.1 with constant noise variance 0,% =0.5forall k =1,2,..., K. In Fig. 3 (left), we show the
averaged observations ¥, k = 1,2,..., K in (4.7b) as functions of the node locations for one realization of
the noisy field. Applying the one-sided ¢ test in (4.22) yields the results in Fig. 3 (right), where the threshold
TG was chosen to satisfy the false-alarm probability Pra = 5%. The filled circles correspond to the nodes
declaring the presence of signal whereas hollow circles correspond to the nodes declaring the signal absence.

The t-test decisions were used to initialize the Gaussian ICM detector (described in Section IV-C, see also
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Fig. 3. Gaussian measurement scenario: (left) averaged observations y,, £ = 1,2,..., K as functions of the node locations and

(right) one-sided t-test results for Pra = 5%.

Section III); the decisions after one and two ICM cycles are shown in Fig. 4. In this example, all isolated
nodes reporting the presence of signal were correctly recognized as false alarms already after two ICM cycles.
The Gaussian ICM algorithm converged in four cycles yielding the results in Fig. 5.

Applying the nonparametric ICM detectors in Section IV-D yields (upon convergence) the results in Fig.
6. These detectors were initialized using the local GLR tests in (4.25) with the threshold 7np chosen to
(approximately) satisfy the false-alarm probability Ppa = 5%. Both the empirical likelihood and entropy

based ICM algorithms converged in four cycles and were successful in removing the false alarms.

B. Quantized Gaussian Measurement Scenario

We now study the performance of the proposed methods in the case where the Gaussian observations
[generated as described in Section VI-A] have been coarsely quantized, leading to non-Gaussian measure-

ments from a discrete probability distribution. Here, we quantized the measurements to the closest integer
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Fig. 4. Gaussian measurement scenario: Event-region detection results after (left) one cycle and (right) two cycles of the Gaussian
ICM algorithm.
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Fig. 8. Quantized Gaussian measurement scenario: Event-region detection results for (left) the empirical likelihood and (right)
empirical entropy nonparametric ICM algorithms.

values in the interval [—2,3]. In Fig. 7 (left), we show the averages y;,, k = 1,2,..., K of the quantized
observations [see (4.7b)] as functions of the node locations. Applying the ICM detectors for Gaussian and
nonparametric measurement-error models to the quantized measurements yields the results in Figs. 7 (right)
and 8, respectively. The ICM algorithms were initialized using the local GLR tests in (4.22) and (4.25) with
the thresholds 7¢ and 7np chosen using (4.22b)—(4.22¢) and (4.25b) to satisfy the false-alarm probability
Ppa = 5%. The Gaussian ICM algorithm performs poorly under this scenario due to the mismatch between
the quantized observations and assumed Gaussian measurement-error model, see Fig. 7 (right). The empirical
likelihood and empirical entropy based ICM methods estimated the unknown probability distributions of the
measurements and successfully removed the false alarms, see Fig. 8. Unlike the Gaussian and empirical
likelihood approaches, the empirical entropy method provides a connected estimate of the event region in the

upper right corner of the network.
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C. Probabilities of False Alarm and Miss

We analyze the average error performances of the GLR and ICM methods under the Gaussian and quantized
Gaussian measurement scenarios. Our performance metrics are the average probabilities of false alarm and
miss, calculated using 100 independent trials'! where averaging has been performed over the noisy random-
field realizations, random node locations, and scheduling (in the ICM methods).

We first consider the Gaussian measurement scenario and present the average probabilities of false alarm
and miss for different methods as functions of the number of observations per sensor N, see Fig. 9. In this

case,

« the average false-alarm and miss error performances of all ICM methods improve as N increases;

« the average false-alarm probability of the one-sided ¢ test is constant and equal to the specified value
of 5%, verifying the validity of (4.22b)—(4.22c);

o the false-alarm probabilities of the local nonparametric GLR tests attain the specified level of 5%
asymptotically (i.e. for large N, see also Section IV-D);

o the Gaussian ICM method achieves the smallest false-alarm probability for all N (compared with the
other methods).

Consider now the quantized Gaussian measurement scenario. In Fig. 10, we show the average probabilities

of false alarm and miss for different methods as functions of /N. Observe that

o as in the Gaussian scenario, the average false-alarm and miss error probabilities of all ICM methods
decrease with IV;

« the average false-alarm probabilities of the local ¢ and nonparametric GLR tests attain the specified level
of 5% for large N;

o for small N, the nonparametric ICM methods achieve smaller average false-alarm and miss error
probabilities than the Gaussian ICM method;

o due to the averaging effect, the Gaussian ICM method performs well when N is large.

Note that the error-probability results presented in Figs. 9 and 10 do not show if the obtained event-region

estimates were connected or not, which may be of interest in practical applications.

D. MRF Calibration

We utilize the calibration method in Section V to estimate the MRF model parameters a and 7. The training

data were generated by randomly placing K = 1000 nodes on a 50 m x 50 m grid and simulating noisy

"Here, the two error probabilities were estimated using the ideal decisions in Fig. 2 (right).
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Fig. 10. Quantized Gaussian measurement scenario: Average probabilities of (left) false alarm and (right) miss, as functions of V.

realizations of a calibration field having constant mean x > 0 within a circular event region with radius

8 m, see Fig. 11. Twenty training data sets were generated by varying the noise realizations, node locations,

and values of the event-region mean . We applied the calibration method proposed in Section V to fit each

training data set and then averaged the obtained estimates, yielding the final calibration results. To obtain the

average error probabilities in Figs. 9 and 10, the values of p in the twenty training data sets were generated

by sampling from the uniform(0.4, 1.4) distribution. To calibrate the ICM algorithms whose results are shown

in Figs. 4-8, we sampled p from a wider range of values [following the uniform(0.4, 3.4) distribution]; the

resulting calibration provided smaller false-alarm probabilities and larger miss probabilities [compared with

the results obtained by sampling x from uniform(0.4,1.4)].
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VII. CONCLUDING REMARKS

We presented an HMRF framework for distributed localized estimation and detection in sensor-network
environments. We developed a calibration method for estimating the MRF model parameters from the training
data and discussed initialization of the proposed algorithms. The proposed framework was applied to event-
region detection.

Further research will include: extending the HMRF framework and ICM method to allow tracking of the
field changes over time, analyzing the impact of communication errors (among the nodes) on the perfor-
mance of the ICM method, comparing the ICM and message passing approaches, relaxing the conditional
independence assumption in (2.3), developing data aggregation algorithms and energy-aware sensor-network
design strategies for HMRFs (e.g., deciding which nodes will be in “alert” or “sleeping” modes), and studying
asymptotic properties of the proposed methods as the number of measurements per node grows.

It is also of interest to relate the proposed ICM and distributed consensus approaches recently proposed in
[24], [25], and [44]. If we select a Gaussian MRF model structure and modify the ICM iteration by replacing
the measurements y;, with the estimates of the hidden field 3 from the previous ICM cycle, the resulting
algorithm closely resembles the average-consensus scheme in [44, eq. (3)]. Note that the consensus methods
estimate global phenomena (e.g., the mean field) whereas the ICM methods estimate localized features, which
is an important distinction between the two approaches.

Since the autologistic MRF model may be too simplistic for many applications, it is important to develop

more general process models that will allow utilizing multiple information bits to describe the hidden field
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of interest. Here, it is of particular interest to derive physically based process models and corresponding ICM
methods.
APPENDIX A. EMPIRICAL LIKELIHOOD AND CRB FOR ESTIMATING ik

We derive the concentrated empirical log-likelihood expression in (4.8). This derivation is similar to that in
[32, Chs. 2.9 and 3.14] and [34, Sect. 2.4] and is given here for completeness. We utilize the method of

Lagrange multipliers to solve the constrained optimization problem in (4.6): Define

N N N
Gi = (Zlnpk,t> + V- (Zpk,t — 1) — N\ - Zpk,t [ye(t) — ) (A.1)
t=1 t=1 t=1

where 7, and )\, are Lagrange multipliers. Forming a weighted sum of the partial derivatives of G with

respect to py; and setting the result to zero yields

Y oG
0= prim— =N+ (A2)
—1 oj

)

where the second equality follows by using the constraints 31 | py; = 1 and 3. | py. [yr(t)— ). Therefore

v, = —IN implying that

1 1
Pkt = (A.3)
PN T+ A () —
where A\ = \i(ux) is chosen as a solution to
N 1N H
k
t) — = — Ada
=0 (A.4b)
Substituting (A.3) into the multinomial log likelihood yields
N
D mppe=—NInN + Z(A; ) (A5)

t=1
where =} (Ag; k) was defined in (4.8b). To satisfy (A.4a), we need to minimize the above expression with

respect to A\, yielding the convex dual formulation in (4.8). Assuming (4.5), all estimates of the multinomial

probabilities need to satisfy

1 1
0< = —- <1 A.6
PREZN T M e (8) — ) (A.6)

and (4.9) is obtained by using the second inequality in (A.6) for all ¢ € {1,2,..., N}. Finally, the first two

derivatives of =i (Ag; ) with respect to A are

05, (Aks k) Mk
— A.7a
O Z 1+ /\k yk — k] ( )

0% 5 (N 1) Mk]
_— = A.7b
O}, Z {1+ )\k [y (t) — pr] 2 (ATP)
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and the Newton-Raphson iteration (4.10) follows.

Least Favorable Families and CRB for p,;, Under the Empirical Likelihood Model: We derive the CRB for
wy. under the empirical likelihood measurement-error model and sketch a proof that the empirical-likelihood
approach employs a least favorable nonparametric distribution family for estimating piy.

We first differentiate the empirical log likelihood in (4.8a) with respect to fu:

dl
L) () (A8)
dpik
which follows by using (A.3)-(A.4) and the constraint Zi\i 1Pkt = 1. Then
Pl () Ak (k)
k) _ . LA (A.9)
dp? dyg
where d\i(ux)/dpy can be computed by differentiating (A.4a) [with Ay evaluated at g (ux)]:
N
d Y (t) — pn
- =0 (A.10a)
dpik { tzl 1 A () [y (8) — paa] }
leading to
di(p { al Mk]2 }—1
duk —~ {1+ )\k yk(t) — ] }?
S yi(t) = e
Ak ( — N (A.10b)
{0 ;{Hm 0 (1) — il 2 )
and, consequently,
d2lk { Z — pu)? }_1
dpi — {1+>\k Mk Z/k( ) = pil}?
Yk (t) — pk
N — M . (A.11)
Y = Aelee) Z{lﬂk( D )

Then, assuming the discrete uniform distribution of the observations yx (1), yx(2),...,yx(N), the CRB for
estimating uy is given by (4.11), which follows from the fact that the discrete uniform distribution of the
observations implies py = 7, and A\g(7,) = 0. Note that (4.11) closely resembles the well-known CRB
expression for u; under the parametric Gaussian measurement-error model in Section IV-A.1 (see e.g. [45,

eq. (3.9)]):

2
T

CRBG = 2.

(A.12)

In particular, (4.11) is a good estimate of (A.12). Hence, the empirical likelihood approach employs a least
favorable nonparametric distribution family for estimating . This conclusion follows from the notion that
a least favorable nonparametric family is one in which the estimation problem (i.e. estimating py in our
case) is “as hard as in a parametric problem” (corresponding to the Gaussian measurement-error model in

the above example), see also the discussion in [32, Ch. 9.6], [33], [42, Sect. 2.3], and [46, Ch. 22.7].
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APPENDIX B. EMPIRICAL ENTROPY AND CRB FOR ESTIMATING i},

We utilize Lagrange multipliers to solve the constrained optimization problem in (4.13) [subject to the

constraints (4.4b)]: Define
N

N
Gr = D> NpriIn(Npry) + - (Zpkt_1> — Nk Y et [yr(t) — ]

t=1 t=1

N
= NlnN+NZpktlnpkt )+ - (Zpkt—l)—NAk-Zpk,t[yk(t)—uk] (B.1)
t=1 t=1

where v, and \; are Lagrange multipliers. Setting the partial derivatives of G, with respect to p; to zero
yields
N+, + NIn(prt) — NXg [ye(t) — p) =0 (B.2)

fort =1,2,..., N. Finding ~; that satisfies the constraint Zi\i 1 Pkt = 1 leads to the following expressions
for the multinomial probabilities:

Pt = exp{Ae [ye() — ]t  _ expfgn()] (B.3)

iy exp{Ae [uk(r) = ml} 7Ly explAe yr(7)
Finally, the constraint Zi\i 1 Pt [yk(t) — px) = 0 is satisfied by finding A\, = A () that solves

N
> " exp{ A [ye(t) — ]} - [ye(t) — o] = 0. (B.4)

Note that (B.4) is an increasing function of A, and that satisfying (B.4) is equivalent to minimizing (j(\x; pix)

in (4.15) with respect to Ag. Finally, the first two derivatives of (i (Ag; px) with respect to Ay are

. N
W = > exp{ [yn(t) — ]} - [y(t) — pur] (B.5a)

t=1

2 . N
W tZ exp{ A [yr(t) — pel} - [ye(t) — )? (B.5b)

and the Newton-Raphson iteration (4.16) follows.

Least Favorable Families and CRB for p,;, Under the Empirical Entropy Model: We derive the CRB for py
under the empirical entropy measurement-error model and sketch a proof that the empirical-entropy approach
employs a least favorable nonparametric distribution family for estimating piy.

We first differentiate the nonparametric log likelihood (4.17) for the empirical entropy model with respect

to pg:
dly; (pr) de(pk)
=N- . — . B.6
To derive (B.6), we have used the identity:
N
> expNe () (0] - [yi() — ] = 0 (B.7)

t=1
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which follows from (B.4). We now compute dAg(uy)/dug by differentiating (B.7):

i {ZGXP Ak () i (8)] - [y (8) — ,uk]} =0 (B.8a)
leading to
AN (pr) >y exp[Ak (ki) i (8)] (B.8b)
due 30 exp () y(8)] - [yw(t) — )
where we have used (B.7) to obtain (B.8b). Finally,
d* 1y (1) PNe(pw) Ak (k)
CMR) _ SRR @) — N - . B.9
a2 a2 Uk — 1x) i (B.9)
Then, assuming the discrete uniform distribution of the observations yx (1), yx(2),...,yx(IV), we have py =
Ur» Me(¥y) = 0, and
d*li.(y N
- ’“(g’“) = (B.10)
du, sy

which follows by using (B.8b). Therefore, (4.11) holds, implying that estimating gy is as hard as in a
parametric Gaussian model and, consequently, the empirical entropy approach employs a least favorable

nonparametric distribution family (see also Appendix A).

APPENDIX C. ICM DETECTOR FOR THE GAUSSIAN MEASUREMENT-ERROR MODEL

Under the Gaussian measurement-error model (4.2) in Section IV-A.1, the conditional predictive log likeli-

hoods in (3.1) simplify to

Li(1|Na(k)) = Mg%ﬁk{zlnpnmsek(yk )—Mk;ff/%>}+1npﬁk|/\/5 ) (1N5(R))
SR i) 2 e
L0 Nph) = ma{ T (94(8); 02) b + g, v 0 (ON(R)
= —N/2 t—:zN/2) In(s3 ) + I pg, nv, (5) (0N (K)) (C.1b)

and (4.20b) follows.

APPENDIX D. ICM DETECTOR FOR NONPARAMETRIC MEASUREMENT-ERROR MODELS

We specialize Step (ICM2) of the ICM algorithm to the nonparametric measurement-error models in Section

IV-A.2. Here, the conditional predictive log likelihoods in (3.1) simplify to

Li(1|Ns(k)) = }E%{lk(uk)}+1np5k|Nﬁ(k)(1Wﬁ(/f)) (D.1a)

Ly (0| N3a(k)) 1:(0) + Inpg, av, k) (OINB(R)). (D.1b)
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We now show that, for k =0 and Kk = —1

. —Nhl N, yk > 0
sG] = { o ) (02)

Proof of (D.2) for Empirical Likelihood: Consider the empirical likelihood model (x = 0). Then, the
result for i, > 0 follows from (4.7a).

We now focus on the case where 7, < 0. Then, for p > 0, the expression in (A.4a) is negative at \;, = 0.
Since (A.4a) is a decreasing function of A, the optimal )\; which solves (A.4) for any pi > 0 must be
negative. Then, (A.8) implies that, in this case, [ (i) is a decreasing function of py and (D.2) follows.

Proof of (D.2) for Empirical Entropy: Consider now the empirical entropy model (x = —1). Then, the
result for 7, > 0 follows by noting that

e M\:(7i) = 0 solves (B.4) and

o the nonparametric log likelihood for the empirical entropy model is maximized at uy = ¥, which

follows by setting dly(puy)/dug in (B.6) to zero and noting that dA(pug)/duy is always positive [see
(B.8b)].
In the case where 7, < 0 and py > 0, the derivative dl(uy)/dux in (B.6) is negative. Therefore, Ij(ux) is
a decreasing function of yy and (D.2) follows.

Finally, substituting (D.1) and (D.2) into (4.24a) yields (4.24b).
APPENDIX E. GLR TESTS FOR px UNDER NONPARAMETRIC MEASUREMENT-ERROR MODELS
We derive the empirical likelihood and entropy GLR tests in Section IV-D. Under the null hypotheses Hg 4, :

wi = 0, the asymptotic distribution of the GLR test statistics

2{2%{%(%)]} —20(0) = [-2NIn N — 21;(0)] - i[0,00) (T (E.1)

is given by, for [ > 0,
lim P(l, <1)=3P03 <)+

N—oo

(E.2)

N[ —=

which follows by adapting the results in [32, Th. 2.2], [34, Sect. 2.3] (for empirical likelihood) and [41], [42]
(for empirical entropy). to the one-sided testing problem in Section IV. Here, x? denotes a random variable
having a central y? distribution with one degree of freedom and can be obtained by squaring a standard
normal random variable. The second term in (E.2) corresponds to the probability that 7, < 0 under Ho g,
which is 1/2; in this case, the GLR test statistics (E.1) becomes zero.

Note that (4.25a) follows by using the square root of (E.1) as the test statistics, which is possible because

—NInN — [;(0) are non-negative. Then, (E.2) implies that a specified false-alarm probability Pra will be
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achieved by comparing

V2[=NIn N — 1(0)] - ifo,00) (T (E.3)

with the threshold myp, computed using (4.25b).
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