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Abstract

We develop a hidden Markov random field (HMRF) framework for distributed signal processing in sensor-

network environments. Under this framework, spatially distributed observations collected at the sensors form

a noisy realization of an underlying random field that has a simple structure with Markovian dependence.

We derive iterated conditional modes (ICM) algorithms for distributed estimation of the hidden random

field from the noisy measurements. We consider both parametric and nonparametric measurement-error

models. The proposed distributed estimators are computationally simple, applicable to a wide range of sensing

environments, and localized, implying that the nodes communicate only with their neighbors to obtain the

desired results. We also develop a calibration method for estimating Markov random field (MRF) model

parameters from training data and discuss initialization of the ICM algorithms. The HMRF framework and

ICM algorithms are applied to event-region detection. Numerical simulations demonstrate the performance

of the proposed approach.

I. INTRODUCTION

R
ECENT advances in integrated sensor and radio-frequency (RF) technologies, wireless communi-

cations, and signal processing allow development of sensor-network systems composed of low-cost

sensor-processor elements (nodes) jointly working to collect and analyze noisy spatio-temporal measure-

ments. Large-scale sensor networks that can monitor an environment at close range with high spatial and

temporal resolutions are expected to play an important role in various applications, including assessing

“health” of machines, aerospace vehicles, and civil-engineering structures; environmental, medical, food-

safety, and habitat monitoring; energy management, inventory control, home and building automation, see

also [1, Ch. 1.3] and [2]–[8]. Each node will have limited sensing, signal processing, and communication

capabilities, but by cooperating with each other they will accomplish tasks that are difficult to perform

with conventional centralized sensing systems [7], [8]. Sensor networks are expected to reveal previously

unobservable phenomena in the physical world [8] and are currently attracting considerable attention.

†This work was supported by the National Science Foundation under Grant CCF-0545571 and the NSF Industry-University

Cooperative Research Program, Center for Nondestructive Evaluation (CNDE), Iowa State University.
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Markov random field (MRF) models have been widely used to describe spatially distributed random

phenomena, see e.g. [9]–[11]. In this paper (see also [12]), we propose a hidden Markov random field

(HMRF) framework for distributed signal processing in sensor-network environments. Under this framework,

spatially distributed observations (collected at the sensors) form a noisy realization of a random field with

Markovian dependence structure.1 Previous work on distributed HMRF based signal processing for sensor

networks focused on developing message passing algorithms for linear Gaussian measurement-error and

MRF process models with known model parameters, see also the discussion in Section II-A. In contrast, our

HMRF framework allows for general measurement and random-field models with unknown measurement-

error model parameters. The unknown measurement-error model parameters vary from one node to another,

thus taking into account imperfect calibration of the sensors at different nodes and permitting distributed

localized processing and nonparametric measurement-error modeling. The nonparametric measurement-error

models that we employ are important in practical applications where accurate parametric models are difficult

to find, especially in large-scale sensor networks operating in time-varying environments [15]–[17].

We derive iterated conditional modes (ICM) algorithms for distributed estimation of a localized phe-

nomenon (modeled as a hidden random field) from noisy measurements. In particular, the proposed ICM

algorithms are designed to increase the predictive likelihood of the hidden field.2 The underlying distributed-

processing paradigm ensures robustness and reliability of the proposed approach. We demonstrate our ap-

proach by applying it to event-region detection, which is an important task in wireless sensor networks [14].

We consider parametric Gaussian and nonparametric (empirical likelihood and entropy) measurement-error

models and utilize an autologistic MRF process model for event-region detection.

The HMRF framework is introduced in Section II and general ICM method is presented in Section III.

We discuss the event-region detection problem in Section IV where we first propose suitable measurement-

error and random-field models (Sections IV-A and IV-B) and then derive the corresponding ICM detection

algorithms (Sections IV-C and IV-D). Initialization of the ICM iterations is discussed in Sections IV-C.1 and

IV-D.1. In Section V, we develop a pseudo predictive likelihood (PPL) calibration method for estimating MRF

model parameters from training data and specialize it to the event-region detection problem. This method

is based on maximizing the product of the full conditional predictive probability density or mass functions

(pdfs/pmfs) of the random-field values at all the nodes. In Section VI, we evaluate the performance of the

proposed detection algorithms via numerical simulations. Concluding remarks are given in Section VII.

1Here, Markovian dependence implies that, given random-field values at all other locations, the conditional distribution of the

random field at any location depends only on the field values at the neighboring locations, see also (2.7) in Section II.
2See [13, Ch. 16.3] for the definition of predictive likelihood and examples of its use.
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II. HIDDEN MARKOV RANDOM FIELD FRAMEWORK

Assume that each node (sensor) k ∈ {1, 2, . . . , K} in the network collects a vector of measurements

yk = [yk(1), yk(2), . . . , yk(N)]T (2.1a)

where N denotes the number of observations collected by each node k and “T ” denotes a transpose. Define

also the vector of all measurements:

y = [yT
1 , yT

2 , . . . ,yT
K ]T . (2.1b)

We assign a hidden random variable βk to each node k and adopt the following hierarchical model for the

collected observations:

• βk, k = 1, 2, . . . , K form an MRF describing the process model:

β = [β1, β2, . . . , βK ]T . (2.2)

• Given the MRF β, yk are conditionally independent random vectors with pdfs or pmfs pyk|βk
(yk|βk; υk)

that depend only on βk

py|β(y |β; υ) =
K
∏

k=1

pyk|βk
(yk |βk; υk) (2.3)

describing the data (measurement-error) model.

Here, υk is the vector of unknown measurement-error model parameters at the kth node and

υ = [υT
1 , υT

2 , . . . ,υT
K ]T . (2.4)

Note that the measurement-error model parameters υk vary with the node index k, taking into account

imperfect calibration of the sensors at different nodes. The above framework can account for both discrete

and continuous measurements and random fields. The parameters υk may be used to model the entire

measurement-error probability distribution pyk|βk
(yk |βk; υk) in a nonparametric manner, provided that the

elements of yk are conditionally independent, identically distributed (i.i.d.); see Section IV-A.2.

Our goal is to estimate the MRF β from the observations yk, k = 1, 2, . . . , K. We define the probability

distribution of β via a conditionally-specified model suitable for distributed neighborhood-based signal

processing. Before formally defining an MRF, let us introduce some terminology and notation. Throughout

this paper, we assume that the neighborhood of a node k [denoted by N (k)] consists of all the nodes

l ∈ {1, 2, . . . , K} that are within a cutoff distance d from that node, i.e.

N (k) = {l : ‖rk − rl‖ ≤ d and l 6= k} (2.5a)
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Fig. 1. A graphical representation of an HMRF model.

where

‖rk − rl‖ =
√

(rk − rl)T (rk − rl)

and rk and rl are the kth and lth node locations in Cartesian coordinates. Define the set of random-field

values in this neighborhood:

Nβ(k) = {βl, l ∈ N (k)} (2.5b)

and the conditional pdfs or pmfs of βk given the neighboring MRF values:

pβk|Nβ(k)

(

βk | Nβ(k)
)

, k = 1, 2, . . . , K. (2.6)

Then, the Markov property of an MRF β implies that, for all k = 1, 2, . . . , K, the conditional pdfs/pmfs of

βk given the random-field values at all other nodes satisfy

pβk|{βl, l 6=k}

(

βk | {βl, l 6= k}
)

= pβk|Nβ(k)

(

βk | Nβ(k)
)

. (2.7)

A. HMRFs as Probabilistic Graphical Models

MRF and HMRF models belong to the (broader) class of probabilistic graphical models (see e.g. [11], [18]–

[22] and references therein) and can be formulated using an undirected mathematical graph whose nodes

correspond to the random variables in the field and its edges define the underlying neighborhood structure.

In [18] and [20], graphical-model based extended message passing3 algorithms are developed for inference

on HMRF models with linear Gaussian measurement-error and MRF process models and known model

3See [22] for a detailed exposition on message passing algorithms for graphical models.
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parameters, embedded-trees and embedded-triangles algorithms are developed for this scenario in [19], [20],

and [23]. A belief propagation approach is proposed in [24] for multi-hypothesis testing of global phenomena

in sensor-network environments. Fig. 1 shows a graphical representation of an HMRF model, where the filled

circles depict the hidden random field (and their locations correspond to the node locations) and hollow circles

the observed data. The edges in Fig. 1 describe the (conditional) statistical dependence between the nodes in

the graph, as inferred from the specifications in (2.5a) and (2.3).

In the following, we present a distributed algorithm for computing maximum predictive likelihood estimates

of the random field β.

III. ICM RANDOM-FIELD ESTIMATION

We propose an ICM algorithm for estimating the MRF β where each node k ∈ {1, 2, . . . , K} performs the

following steps:

(ICM1) collects the current estimates of βl from its neighborhood N (k);

(ICM2) updates its estimate of βk by maximizing the conditional predictive log likelihood:

Lk

(

βk | Nβ(k)
)

= max
υk

{ln pyk|βk
(yk|βk; υk)} + ln pβk|Nβ(k)

(

βk | Nβ(k)
)

(3.1)

with respect to βk;

(ICM3) broadcasts the obtained estimate of βk to the nodes in the neighborhood N (k).

When applied to each node k in turn, this procedure defines a single cycle of the ICM algorithm. The

cycling is performed until convergence, i.e. until the estimates of βk do not change significantly for all

k ∈ {1, 2, . . . , K}. The ICM approach is computationally simple and applicable to a wide range of sensing

environments. It does not require careful treatments of loops in the inference graphs, constructing junction

trees etc. It is also localized, implying that the nodes communicate only with their neighbors to obtain the

desired results. Localized algorithms are robust to node failures and the communication overhead scales well

with increasing network size, see [2] and [3]. Distributed localized algorithms and architectures also facilitate

rapid data processing and information collection, and are well-suited for systems that utilize sleep modes to

conserve energy [25].

Denote by pβ(β) the joint pdf/pmf of β1, β2, . . . , βK . Then, applying (ICM1)–(ICM3) at each node k

increases the joint predictive log-likelihood function of β (see also [13, Ch. 16.3]):4

L(β) = max
υ

{ln[py|β(y|β; υ)]} + ln[pβ(β) ] (3.2)

4Note that the conditional predictive log likelihood Lk

`

βk | Nβ(k)
´

in (3.1) follows from the joint predictive log-likelihood L(β)
by substituting the identity pβ(β) = pβk|Nβ(k)

`

βk | Nβ(k)
´

· pNβ(k)

`

Nβ(k)
´

into (3.2) and keeping the terms that depend on βk.
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in a stepwise-ascent manner. In particular, combining the stepwise-ascent maximization approach with the

Markovian property of pβ(β) leads to the distributed localized iteration (ICM1)–(ICM3). In general, this

iteration converges to a local maximum of L(β). However, if the conditional predictive log likelihoods in

(3.1) are unimodal in βk (as in the HMRFs with linear Gaussian measurement-error and MRF process

models studied in [18]–[20] and [23]), then the ICM algorithm converges to the global maximum of L(β).

Interestingly, its convergence to a local maximum of L(β) [when initialized with the local maximum

likelihood (ML) estimates of the βk’s] may be preferred compared with finding the global maximum because

MRFs often have undesirable large-scale properties [10].

The predictive log likelihood in (3.2) has a Bayesian interpretation. Here, we view pβ(β) as the prior

distribution of the hidden field β and assign a flat prior distribution: pυ(υ) ∝ 1 to the measurement-

error model parameters υ. Then, maximizing L(β) in (3.2) yields a mode of the joint posterior pdf/pmf of

the unknown parameters. We emphasize that the purpose of the proposed method is to resolve ambiguous

measurements. Otherwise, if the data provides strong evidence about the hidden field β, the influence of the

prior pβ(β) disappears, which is true for Bayesian methods in general. The ICM approach to finding modes

of joint posterior distributions dates back to the seminal paper by Lindley and Smith [26, Sect. 4], see also

[27, Ch. 10.2.1] and [28, Ch. 6.2.2]. The iteration (ICM1)–(ICM3) generalizes the ICM algorithm for image

analysis in [9, Ch. 7.4.3] and [10] and adapts it to the sensor-network scenario by allowing for more general

neighborhood models and unknown measurement-error model parameters that vary from node to node. The

latter extension is key for sensor-network applications where the nodes are not perfectly calibrated and data

processing should be performed locally as much as possible. It also allows nonparametric measurement-error

modeling, as discussed in Section IV-A.2.

In the following section, we demonstrate the proposed approach by applying it to event-region detection.

IV. EVENT-REGION DETECTION USING THE HMRF FRAMEWORK AND ICM METHOD

We utilize the proposed HMRF framework and ICM method to efficiently remove false alarms in event-region

detection tasks. Here, our goal is to detect a region in the environment in which an event of interest has

occurred. For example, if the network is capable of sensing concentration of chemical X , then it is of interest

to answer the following question [14]: “In which regions in the environment is the concentration of chemical

X greater than a specified level?”

We first describe measurement-error and process models suitable for event-region detection (Sections IV-A

and IV-B) and then derive the corresponding ICM algorithms for event-region detection (Sections IV-C and

IV-D).
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A. Measurement-Error Model

In this section, we consider hidden fields that take two discrete values

• βk = 0 (signal absent) and

• βk = 1 (signal present)

and utilize a simple signal-plus-noise measurement-error model for the measurements yk(1), yk(2), . . . , yk(N)

collected at node k ∈ {1, 2, . . . , K}:

yk(t) = µk(βk) + ek(t), t = 1, 2, . . . , N (4.1a)

where

• µk(0) = 0 (signal absent),

• µk(1) is the (unknown) nonzero signal, and

• ek(t), t = 1, 2, . . . , N is zero-mean i.i.d. noise.

We denote the pdf/pmf of the noise ek(t) by pnoisek
(ek(t)). Consequently, given βk, yk(1), yk(2), . . . , yk(N)

are conditionally i.i.d. random variables with the joint pdf/pmf

pyk|βk
(yk |βk) =

N
∏

t=1

pnoisek

(

yk(t) − µk(βk)
)

(4.1b)

see also (2.3) for a full measurement-error model specification.

1) Gaussian Measurement-Error Model: Under the Gaussian measurement-error model, we assume that

the noise pdf at node k is zero-mean Gaussian:

pnoisek
(ek(t);σ

2
k) =

1

σk

√
2π

· exp
[

− e2
k(t)

/

(2σ2
k)

]

(4.2)

where σ2
k is the unknown noise variance at the kth sensor. Here, the measurement-error model parameters

are υk = σ2
k for βk = 0 and υk = [µk(1), σ2

k]
T for βk = 1.

2) Nonparametric Measurement-Error Models: We now consider a scenario where the noise probability

distribution pnoisek
(·) at node k is unknown and utilize a class of nonparametric measurement-error models.

This scenario is important in practical applications where accurate parametric measurement-error models are

difficult to find, as is often the case in large-scale sensor networks operating in time-varying environments

(see e.g. [15]–[17]). To simplify the notation, we omit the dependence of the mean value µk on βk throughout

this section. Clearly, the discussion on unknown µk corresponds to the case where µk = µk(1) 6= 0.

Assume that, given βk, yk(1), yk(2), . . . , yk(N) are conditionally i.i.d. random variables with mean µk =

µk(βk) where each yk(t) is assigned a multinomial probability pk,t. We then construct the following non-
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parametric log-likelihood function of the mean µk at node k:

lk(µk) =

N
∑

t=1

ln pk,t(µk) (4.3)

where pk,t(µk), t = 1, 2, . . . , N are estimates of the probabilities pk,t, t = 1, 2, . . . , N computed by mini-

mizing the Cressie-Read power divergence5 between the discrete distribution defined by pk,t, t = 1, 2, . . . , N

and the discrete uniform distribution on t = 1, 2, . . . , N (see [30], [31], and [32, Ch. 3.16]):

min
pk,t t=1,2,...,N

∑N
t=1[(Npk,t)

−κ − 1]

N κ (1 + κ)
(4.4a)

subject to the constraints

N
∑

t=1

pk,t [yk(t) − µk] = 0, pk,t ≥ 0,
N

∑

t=1

pk,t = 1. (4.4b)

Here, −∞ < κ < ∞ is a known constant [defining a particular choice of the discrepancy measure in (4.4a)]

and the degenerate cases κ ∈ {0,−1} are handled by taking limits.

In the following, we focus on the non-trivial case where6

yk,MIN = min
t∈{1,2,...,N}

yk(t) < µk < max
t∈{1,2,...,N}

yk(t) = yk,MAX (4.5)

and on the limiting values of κ (i.e. κ = 0 and κ = −1), which correspond to commonly used least favorable

distribution families [32, Chs. 9.6 and 9.11] and lead to the empirical likelihood and empirical entropy

measurement-error models discussed below. (The concept of a least favorable family was introduced by Stein

in [33].)

Empirical Likelihood: If κ = 0 in (4.4a), (4.3) simplifies to the following concentrated empirical log-

likelihood function7 of the mean µk at node k:

lk(µk) =
{

max
pk,t t=1,2,...,N

(

N
∑

t=1

ln pk,t

)

∣

∣

∣

∣

N
∑

t=1

pk,t [yk(t) − µk] = 0, pk,t ≥ 0,
N

∑

t=1

pk,t = 1
}

(4.6)

which can be viewed as a multinomial concentrated log likelihood [34]. In this case, the measurement-error

model parameters are υk = [pk,1, pk,2, . . . , pk,N ]T for βk = 0 and υk = [µk, pk,1, pk,2, . . . , pk,N ]T for βk = 1,

where the multinomial probabilities pk,1, pk,2, . . . , pk,N are constrained to satisfy the conditions in (4.4b), see

also (4.6).

Maximizing lk(µk) with respect to µk yields

max
µk

[lk(µk)] = −N lnN (4.7a)

5The Cressie-Read divergence is closely related to the Rényi divergence [29], see also [30] and [31].
6Note that the optimization problem in (4.4) does not have a solution if µk < yk,MIN or µk > yk,MAX. In such cases, we

set lk(µk) = −∞ by convention. If yk,MIN = yk,MAX = µk, we take lk(µk) = −N ln N and if µk = yk,MIN < yk,MAX or

µk = yk,MAX > yk,MIN, we set lk(µk) = −∞.
7See also [32] and [34] for the definition and properties of the empirical likelihood.
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which follows by noting that, subject to
∑N

t=1 pk,t = 1, the log-likelihood function
∑N

t=1 ln pk,t is maximized

by choosing the discrete uniform distribution of the observations (i.e. pk,t = 1/N, t = 1, 2, . . . , N ). This

choice yields the nonparametric maximum likelihood estimate (NPMLE) of µk:

yk =
1

N
·

N
∑

t=1

yk(t) = arg max
µk

lk(µk) (4.7b)

also known as the bootstrap estimate of µk [34]. In Appendix A, we compute (4.6) by solving a one-

dimensional convex dual problem:

lk(µk) = −N lnN + min
λk

Ξk(λk; µk) (4.8a)

where

Ξk(λk; µk) = −
N

∑

t=1

ln{1 + λk [yk(t) − µk]} (4.8b)

is a convex function of λk. To ensure that the estimates of the multinomial probabilities remain in the allowed

parameter space, the search for λk that minimizes (4.8b) should be constrained to the interval (see Appendix

A):

1 − N−1

µk − yk,MAX

< λk <
1 − N−1

µk − yk,MIN

(4.9)

and can be efficiently performed using the damped Newton-Raphson iteration8:

λ
(i+1)
k = λ

(i)
k + δ

(i)
k ·

(

N
∑

t=1

[yk(t) − µk]
2

{1 + λ
(i)
k [yk(t) − µk]}2

)−1
·

N
∑

t=1

yk(t) − µk

1 + λ
(i)
k [yk(t) − µk]

(4.10)

where the damping factor 0 < δ
(i)
k ≤ 1 is chosen (at every step i) to ensure that (4.8b) decreases and

λ
(i+1)
k remains within the interval specified by (4.9).9 The above iteration converges to the unique solution

λk = λk(µk).

In Appendix A, we sketch a proof that the empirical-likelihood approach employs a least favorable

nonparametric distribution family for estimating µk and derive the Cramér-Rao bound (CRB) for estimating

µk under the empirical likelihood measurement-error model. Assuming the discrete uniform distribution of

the observations, this CRB simplifies to:

−
[

N
∑

t=1

1

N
· d2lk(yk)

dy2
k

]−1
=

s2
k

N
(4.11)

8See e.g. [35, Ch. 9.7] for an introduction to the Newton-Raphson algorithms. To simplify the notation in (4.10) and later in (4.16),

we omit the dependence of λ
(i)
k and δ

(i)
k on µk.

9In particular, we start with δ
(i)
k = 1 and check if (4.8b) decreases and λ

(i+1)
k remains within the interval (4.9). If these tests fail,

we keep halving δ
(i)
k until they are satisfied.
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where

s2
k = s2

0,k − y2
k (4.12a)

s2
0,k =

1

N
·

N
∑

t=1

y2
k(t) (4.12b)

and yk has been defined in (4.7b).

Empirical Entropy: For κ = −1, (4.4a) reduces to

min
pk,t t=1,2,...,N

N
∑

t=1

pk,t ln(Npk,t) (4.13)

subject to the constraints in (4.4b). In (4.13), we minimize the relative entropy10 between the multino-

mial distribution defined by the probabilities pk,t, t = 1, 2, . . . , N and the discrete uniform distribution

on t = 1, 2, . . . , N , yielding the empirical entropy estimates pk,t(µk), t = 1, 2, . . . , N of the multinomial

probabilities. It can be shown that pk,t(µk) have the following form (see Appendix B):

pk,t(µk) =
exp[λk(µk) yk(t)]

∑N
τ=1 exp[λk(µk) yk(τ)]

, t = 1, 2, . . . , N (4.14)

where λk(µk) is obtained by minimizing

ζk(λk; µk) =
N

∑

t=1

exp{λk [yk(t) − µk]} (4.15)

with respect to λk. Note that ζk(λk; µk) is a convex function of λk and can be efficiently minimized using

the damped Newton-Raphson iteration:

λ
(i+1)
k = λ

(i)
k − δ

(i)
k ·

{

N
∑

t=1

exp[λ
(i)
k yk(t)] · [yk(t) − µk]

2
}−1

·
N

∑

t=1

exp[λ
(i)
k yk(t)] · [yk(t) − µk]. (4.16)

Here, the damping factor 0 < δ
(i)
k ≤ 1 is chosen to ensure that (4.15) decreases. Finally, we compute the

nonparametric log-likelihood function of µk by substituting (4.14) into (4.3):

lk(µk) = N · λk(µk) yk − N · ln
{

N
∑

t=1

exp[λk(µk) yk(t)]
}

. (4.17)

The above empirical-entropy approach is closely related to the nonparametric tilting in [37, Sect. 11] and

[38, Ch. 10.10]. It is also known as the empirical exponential family likelihood [39, Ch. 10] because it can be

derived by constraining the probability distribution of yk(1), yk(2), . . . , yk(N) to belong to the exponential

family of distributions.

In [37, Sect. 11], Efron presented the CRB for µk under the empirical entropy measurement-error model

and used it to argue that the empirical-entropy approach employs a least favorable family for estimating µk.

Assuming the discrete uniform distribution of the observations, the expression for this CRB simplifies to

(4.11), see Appendix B and [37, eq. (11.10)].

10Relative entropy, also known as Kullback-Leibler distance, is defined in e.g. [36, Ch. 2.3].
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B. Autologistic MRF Process Model

Assume that each node k makes a binary decision about its current status, i.e. it decides between the hypothesis

H0,k : (signal absent, βk = 0), corresponding to µk = 0

versus the one-sided alternative

H1,k : (signal present, βk = 1), corresponding to µk > 0.

This formulation is suitable for detecting event regions with elevated concentrations of chemicals, see the

example at the beginning of Section IV. In this example, we restrict the parameter space of the mean signal

µk to the set of non-negative real numbers. To describe the binary MRF for event-region detection problems,

we adopt the autologistic MRF process model specified by the conditional pmfs (see [9, Ch. 6.5.1]):

pβk|Nβ(k)(βk | Nβ(k)) =
exp

(

akβk + βk · ∑l∈N (k) ck,l βl

)

1 + exp
(

ak +
∑

l∈N (k) ck,l βl

) (4.18a)

for k = 1, 2, . . . , K, where ak and ck,l are spatial-trend and spatial-dependence MRF model parameters.

Furthermore, we utilize the following simple spatial trend and dependence models:

• constant spatial trend (independent of k):

ak = a (4.18b)

• homogeneous spatial dependence with equal evidence from each neighbor:

ck,l =

{

η, ‖rk − rl‖ ≤ d
0, ‖rk − rl‖ > d

(4.18c)

where d is the cutoff distance, see also Section II.

In event-region detection problems, η is a positive constant describing the field strength. This spatial-

dependence model quantifies the notion that the random-field values at the nodes that are close (in terms of

the spatial distance) should be more similar than the values at the nodes that are far apart. More complex

spatial dependence models can be developed along the lines of [9] (for isotropic dependence) and [40] (for

anisotropic dependence).

In applications where the cutoff distance d is approximately equal to the radio-transmission range of the

sensor elements, the neighborhood N (k) consists of those nodes with which k can communicate directly.

Then, we can determine the neighborhoods without utilizing the node location information. However, the

assumption that the cutoff distance coincides with the communication range may be impractical. In addition,

the effective cutoff distance may vary slightly from one node to another.

In the following, we specialize the general ICM algorithm in Section III to the event-region detection

problem using the measurement-error model in Section IV-A and process model in (4.18a)–(4.18c).
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C. ICM Detection for Gaussian Measurement-Error Model

We first define the indicator function

iA(x) =

{

1, x ∈ A,
0, otherwise

. (4.19)

Under the Gaussian measurement-error and autologistic process models, Step (ICM2) in the ICM algorithm

simplifies to selecting βk = 1 if

Lk

(

1 | Nβ(k)
)

− Lk

(

0 | Nβ(k)
)

=
N

2
· ln

(s2
0,k

s2
k

)

· i[0,∞)(yk) + ak +
∑

l∈N (k)

ck,lβl (4.20a)

=
N

2
· ln

(s2
0,k

s2
k

)

· i[0,∞)(yk) + a + η uk (4.20b)

≥ 0 (4.20c)

and selecting βk = 0 otherwise; see Appendix C for details of the derivation. Here,

uk =
∑

l∈N (k)

βl (4.21)

is the number of neighbors of k reporting the presence of signal and N (k), yk, s
2
k and s2

0,k have been defined in

(2.5a), (4.7b), (4.12a), and (4.12b). Equation (4.20b) follows by substituting (4.18b) and (4.18c) into (4.20a).

The first term in (4.20b) is the one-sided t-test statistic for the mean µk (based on the “local” measurements

collected at node k), whereas the second and third terms account for the spatial trend and spatial dependence

effects introduced by the MRF model.

1) Initialization: To obtain initial decisions at each node k, we ignore the neighborhood dependence and

apply the local one-sided t test for the mean µk: select βk = 1 if

s2
0,k

s2
k

· i[0,∞)(yk) ≥ τG (4.22a)

and select βk = 0 otherwise. This test is also the generalized likelihood ratio (GLR) test for the hypothesis

testing problem described in Section IV-B. Denote by B(0.5(N − 1), 0.5) the central beta distribution with

parameters 0.5(N − 1) and 0.5. We select the threshold

τG = b−1
0.5(N−1),0.5,2PFA

(4.22b)

to guarantee a specified probability of false alarm PFA. Here, b0.5(N−1),0.5,p is defined using

P [β ≤ b0.5(N−1),0.5,p] = p (4.22c)

where β is a B(0.5(N − 1), 0.5) random variable.
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D. ICM Detection for Nonparametric Measurement-Error Models

Under the nonparametric measurement-error models in Section IV-A.2, the condition (4.5) implies that one-

sided detection in Section IV-B will be meaningful only if

yk,MAX ≥ 0 (4.23)

with equality implying yk,MIN = yk,MAX = 0. For the empirical likelihood and entropy measurement-error

models, Step (ICM2) simplifies to selecting βk = 1 if

Lk

(

1 |βl ∈ Nβ(k)
)

− Lk

(

0 |βl ∈ Nβ(k)
)

= max
µk>0

[lk(µk)] − lk(0) + ln pβk|Nβ(k)

(

1|Nβ(k)
)

− ln pβk|Nβ(k)

(

0|Nβ(k)
)

(4.24a)

= [−N lnN − lk(0)] · i[0,∞)(yk) + a + η uk (4.24b)

≥ 0 (4.24c)

and selecting βk = 0 otherwise, see Appendix D. Here, the nonparametric log likelihoods lk(0) for the

empirical likelihood and entropy models are computed using (4.8) and (4.17), respectively.

1) Initialization: We now discuss the initialization of the ICM iteration under the empirical likelihood and

entropy measurement-error models. We propose the following local GLR tests that ignore the neighborhood

dependence: select βk = 1 if

√

2 [−N lnN − lk(0)] · i[0,∞)(yk) ≥ τNP (4.25a)

and select βk = 0 otherwise. The threshold τNP which guarantees a specified probability of false alarm PFA

can be approximately computed by solving (see Appendix E):

Φ(τNP) = 1 − PFA (4.25b)

where Φ(·) denotes the cumulative distribution function of the standard normal random variable. The above

approximation is based on the Wilks’ theorem for the empirical likelihood [32, Th. 2.2], [34, Sect. 2.3] and

similar results for empirical entropy [41], [42], derived under the assumption that N → ∞, see also Appendix

E. Therefore, its accuracy improves as the number of observations per sensor increases.

In the above ICM algorithms, the nodes exchange binary messages (βk = 0 or βk = 1) to inform

neighbors about their status; the communication cost of this exchange is low, which is important in most

practical applications that require energy and bandwidth efficiency [7].
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V. MRF CALIBRATION

Assume that training data is available containing both the observations yk, k = 1, 2, . . . , K and the true

values of the MRF β. We develop a calibration method for estimating the MRF model parameters from the

training data. Denote the vector of MRF model parameters by ω. To emphasize the dependence of the local

and global predictive log-likelihood functions in (3.1) and (3.2) on ω, we use Lk

(

βk | Nβ(k);ω
)

and L(β; ω)

to denote these functions throughout this section. Similarly, we use pβk|Nβ(k)

(

βk | Nβ(k);ω
)

to denote the

conditional pdfs in (2.6).

We denote

exp[L(β; ω)]
∫

exp[L(b; ω)] db
or

exp[L(β; ω)]
∑

b exp[L(b; ω)]
(5.1)

as the “predictive” pdfs or pmfs of β, see [13, Ch. 16.3]. Then, we may compute maximum “predictive”

likelihood estimates of ω by maximizing the expressions in (5.1). However, the denominators in (5.1) are

usually computationally intractable. Motivated by Besag’s pseudolikelihood approach in [9, pp. 461–463] and

[43], we construct a computationally tractable log pseudo predictive likelihood function:

LPPL(ω) =
K

∑

k=1

ln
{ exp[Lk

(

βk | Nβ(k);ω
)

]
∑1

i=0 exp[Lk

(

i | Nβ(k);ω
)

]

}

(5.2)

and estimate the MRF model parameters ω by maximizing LPPL(ω) with respect to ω. Here,

exp[Lk

(

βk | Nβ(k);ω
)

]
∑1

i=0 exp[Lk

(

i | Nβ(k);ω
)

]
(5.3)

is the full conditional predictive pdf/pmf of βk. The above calibration method applies to the general measurement-

error and MRF models described in Section II.

Event-Region Detection: We now specialize (5.2) to the event-region detection problem, leading to

LPPL(ω) = const + a ·
(

K
∑

k=1

βk

)

+ η ·
(

K
∑

k=1

βk uk

)

−
K

∑

k=1

ln
{

1 + exp
[

Lk

(

1 | Nβ(k);ω
)

− Lk

(

0 | Nβ(k);ω
)]

}

(5.4)

where const denotes terms that do not depend on the MRF model parameters ω. Here, (5.4) follows by

substituting the autologistic MRF model (4.18a)–(4.18c) into (5.2) and neglecting constant terms. Under the

Gaussian and nonparametric measurement-error models in Section IV-A, the expressions Lk

(

βk = 1 |βl ∈

Nβ(k)
)

− Lk

(

βk = 0 |βl ∈ Nβ(k)
)

in (5.4) simplify to (4.20b) and (4.24b), respectively. To efficiently

compute the last term in (5.4), we utilize the following approximation: for large positive x,

ln[1 + exp(x)] ≈ x. (5.5)
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Interestingly, setting the data-dependent log-likelihood terms in (3.1) to zero and substituting the resulting

expressions into (5.2) yields the Besag’s pseudo log-likelihood function

LPL(ω) =
K

∑

k=1

ln pβk|Nβ(k)

(

βk | Nβ(k);ω
)

(5.6)

for estimating the MRF model parameters, see [9, pp. 461–463] and [43]. Note that (5.6) utilizes only

the MRF β and does not depend on the measurements yk, k = 1, 2, . . . , K. Maximizing the pseudo log

likelihood (5.6) would yield reasonable estimates of the MRF parameters if the measurement-error model

parameters υ1, υ2, . . . ,υK were known in the ICM estimation/detection stage. Note, however, that we assume

that υ1, υ2, . . . ,υK are unknown and estimate them locally at each node, which is taken into account by the

PPL calibration method in (5.2).

VI. NUMERICAL EXAMPLES

To assess the performance of the proposed event-region detection methods, we consider sensor networks

containing K = 1000 nodes randomly (uniformly) distributed on a 50 m × 50 m grid with 1 m spacing

between the potential node locations. We assume that each sensor k collects N = 5 measurements corrupted

by i.i.d. zero-mean additive noise, unless specified otherwise (see e.g. Section VI-C). The noiseless field

containing two event regions is shown in Fig. 2 (left) and the sensor locations (with corresponding ideal

decisions) are shown in Fig. 2 (right). Here, the filled circles correspond to the nodes in the event regions.

The noisy measurements collected at the nodes k in the two event regions have means µk ∈ {0.8, 1} whereas

the noise-only measurements collected at the nodes outside the event regions have zero means.

Throughout this section, we set the cutoff distance to d = 3 m and define neighborhoods according to

(2.5a). In all simulation examples, we estimated the MRF model parameters a (spatial trend) and η (field

strength) using the calibration procedure in Section V, where the calibration field and other details of our

implementation are given in Section VI-D.

A. Gaussian Measurement Scenario

In the first set of simulations, we generated the simulated data using the Gaussian measurement-error model

in Section IV-A.1 with constant noise variance σ2
k = 0.5 for all k = 1, 2, . . . , K. In Fig. 3 (left), we show the

averaged observations yk, k = 1, 2, . . . , K in (4.7b) as functions of the node locations for one realization of

the noisy field. Applying the one-sided t test in (4.22) yields the results in Fig. 3 (right), where the threshold

τG was chosen to satisfy the false-alarm probability PFA = 5%. The filled circles correspond to the nodes

declaring the presence of signal whereas hollow circles correspond to the nodes declaring the signal absence.

The t-test decisions were used to initialize the Gaussian ICM detector (described in Section IV-C, see also
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Fig. 2. (Left) Noiseless field and (right) a sensor network with K = 1000 nodes.
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Fig. 3. Gaussian measurement scenario: (left) averaged observations yk, k = 1, 2, . . . , K as functions of the node locations and

(right) one-sided t-test results for PFA = 5%.

Section III); the decisions after one and two ICM cycles are shown in Fig. 4. In this example, all isolated

nodes reporting the presence of signal were correctly recognized as false alarms already after two ICM cycles.

The Gaussian ICM algorithm converged in four cycles yielding the results in Fig. 5.

Applying the nonparametric ICM detectors in Section IV-D yields (upon convergence) the results in Fig.

6. These detectors were initialized using the local GLR tests in (4.25) with the threshold τNP chosen to

(approximately) satisfy the false-alarm probability PFA = 5%. Both the empirical likelihood and entropy

based ICM algorithms converged in four cycles and were successful in removing the false alarms.

B. Quantized Gaussian Measurement Scenario

We now study the performance of the proposed methods in the case where the Gaussian observations

[generated as described in Section VI-A] have been coarsely quantized, leading to non-Gaussian measure-

ments from a discrete probability distribution. Here, we quantized the measurements to the closest integer
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Fig. 4. Gaussian measurement scenario: Event-region detection results after (left) one cycle and (right) two cycles of the Gaussian

ICM algorithm.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

meters

m
e

te
rs

Fig. 5. Gaussian measurement scenario: Event-region detection results upon convergence of the Gaussian ICM algorithm.
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Fig. 6. Gaussian measurement scenario: Event-region detection results for (left) the empirical likelihood and (right) empirical entropy

nonparametric ICM algorithms.
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Fig. 7. Quantized Gaussian measurement scenario: (Left) averaged observations yk, k = 1, 2, . . . , K as functions of the node

locations and (right) event-region detection results for the Gaussian ICM algorithm.
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Fig. 8. Quantized Gaussian measurement scenario: Event-region detection results for (left) the empirical likelihood and (right)

empirical entropy nonparametric ICM algorithms.

values in the interval [−2, 3]. In Fig. 7 (left), we show the averages yk, k = 1, 2, . . . , K of the quantized

observations [see (4.7b)] as functions of the node locations. Applying the ICM detectors for Gaussian and

nonparametric measurement-error models to the quantized measurements yields the results in Figs. 7 (right)

and 8, respectively. The ICM algorithms were initialized using the local GLR tests in (4.22) and (4.25) with

the thresholds τG and τNP chosen using (4.22b)–(4.22c) and (4.25b) to satisfy the false-alarm probability

PFA = 5%. The Gaussian ICM algorithm performs poorly under this scenario due to the mismatch between

the quantized observations and assumed Gaussian measurement-error model, see Fig. 7 (right). The empirical

likelihood and empirical entropy based ICM methods estimated the unknown probability distributions of the

measurements and successfully removed the false alarms, see Fig. 8. Unlike the Gaussian and empirical

likelihood approaches, the empirical entropy method provides a connected estimate of the event region in the

upper right corner of the network.
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C. Probabilities of False Alarm and Miss

We analyze the average error performances of the GLR and ICM methods under the Gaussian and quantized

Gaussian measurement scenarios. Our performance metrics are the average probabilities of false alarm and

miss, calculated using 100 independent trials11 where averaging has been performed over the noisy random-

field realizations, random node locations, and scheduling (in the ICM methods).

We first consider the Gaussian measurement scenario and present the average probabilities of false alarm

and miss for different methods as functions of the number of observations per sensor N , see Fig. 9. In this

case,

• the average false-alarm and miss error performances of all ICM methods improve as N increases;

• the average false-alarm probability of the one-sided t test is constant and equal to the specified value

of 5%, verifying the validity of (4.22b)–(4.22c);

• the false-alarm probabilities of the local nonparametric GLR tests attain the specified level of 5%

asymptotically (i.e. for large N , see also Section IV-D);

• the Gaussian ICM method achieves the smallest false-alarm probability for all N (compared with the

other methods).

Consider now the quantized Gaussian measurement scenario. In Fig. 10, we show the average probabilities

of false alarm and miss for different methods as functions of N . Observe that

• as in the Gaussian scenario, the average false-alarm and miss error probabilities of all ICM methods

decrease with N ;

• the average false-alarm probabilities of the local t and nonparametric GLR tests attain the specified level

of 5% for large N ;

• for small N , the nonparametric ICM methods achieve smaller average false-alarm and miss error

probabilities than the Gaussian ICM method;

• due to the averaging effect, the Gaussian ICM method performs well when N is large.

Note that the error-probability results presented in Figs. 9 and 10 do not show if the obtained event-region

estimates were connected or not, which may be of interest in practical applications.

D. MRF Calibration

We utilize the calibration method in Section V to estimate the MRF model parameters a and η. The training

data were generated by randomly placing K = 1000 nodes on a 50 m × 50 m grid and simulating noisy

11Here, the two error probabilities were estimated using the ideal decisions in Fig. 2 (right).



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, 2006 20

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 N

F
a

ls
e

−
a

la
rm

 p
ro

b
a

b
il

it
y

Empirical entropy GLR

Empirical likelihood GLR

 t test

Empirical entropy DMAP

Empirical likelihood DMAP

Gaussian DMAP

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 N

M
is

s
 p

ro
b

a
b

il
it

y

Gaussian DMAP

Empirical likelihood DMAP

Empirical entropy DMAP

 t test

Empirical likelihood GLR

Empirical entropy GLR

Fig. 9. Gaussian measurement scenario: Average probabilities of (left) false alarm and (right) miss, as functions of the number of

observations per sensor N .
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Fig. 10. Quantized Gaussian measurement scenario: Average probabilities of (left) false alarm and (right) miss, as functions of N .

realizations of a calibration field having constant mean µ > 0 within a circular event region with radius

8 m, see Fig. 11. Twenty training data sets were generated by varying the noise realizations, node locations,

and values of the event-region mean µ. We applied the calibration method proposed in Section V to fit each

training data set and then averaged the obtained estimates, yielding the final calibration results. To obtain the

average error probabilities in Figs. 9 and 10, the values of µ in the twenty training data sets were generated

by sampling from the uniform(0.4, 1.4) distribution. To calibrate the ICM algorithms whose results are shown

in Figs. 4–8, we sampled µ from a wider range of values [following the uniform(0.4, 3.4) distribution]; the

resulting calibration provided smaller false-alarm probabilities and larger miss probabilities [compared with

the results obtained by sampling µ from uniform(0.4, 1.4)].
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Fig. 11. Noiseless field used for calibration.

VII. CONCLUDING REMARKS

We presented an HMRF framework for distributed localized estimation and detection in sensor-network

environments. We developed a calibration method for estimating the MRF model parameters from the training

data and discussed initialization of the proposed algorithms. The proposed framework was applied to event-

region detection.

Further research will include: extending the HMRF framework and ICM method to allow tracking of the

field changes over time, analyzing the impact of communication errors (among the nodes) on the perfor-

mance of the ICM method, comparing the ICM and message passing approaches, relaxing the conditional

independence assumption in (2.3), developing data aggregation algorithms and energy-aware sensor-network

design strategies for HMRFs (e.g., deciding which nodes will be in “alert” or “sleeping” modes), and studying

asymptotic properties of the proposed methods as the number of measurements per node grows.

It is also of interest to relate the proposed ICM and distributed consensus approaches recently proposed in

[24], [25], and [44]. If we select a Gaussian MRF model structure and modify the ICM iteration by replacing

the measurements yk with the estimates of the hidden field βk from the previous ICM cycle, the resulting

algorithm closely resembles the average-consensus scheme in [44, eq. (3)]. Note that the consensus methods

estimate global phenomena (e.g., the mean field) whereas the ICM methods estimate localized features, which

is an important distinction between the two approaches.

Since the autologistic MRF model may be too simplistic for many applications, it is important to develop

more general process models that will allow utilizing multiple information bits to describe the hidden field
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of interest. Here, it is of particular interest to derive physically based process models and corresponding ICM

methods.

APPENDIX A. EMPIRICAL LIKELIHOOD AND CRB FOR ESTIMATING µk

We derive the concentrated empirical log-likelihood expression in (4.8). This derivation is similar to that in

[32, Chs. 2.9 and 3.14] and [34, Sect. 2.4] and is given here for completeness. We utilize the method of

Lagrange multipliers to solve the constrained optimization problem in (4.6): Define

Gk =
(

N
∑

t=1

ln pk,t

)

+ γk ·
(

N
∑

t=1

pk,t − 1
)

− Nλk ·
N

∑

t=1

pk,t [yk(t) − µk] (A.1)

where γk and λk are Lagrange multipliers. Forming a weighted sum of the partial derivatives of Gk with

respect to pk,t and setting the result to zero yields

0 =
N

∑

t=1

pk,t
∂Gk

∂pk,t

= N + γk (A.2)

where the second equality follows by using the constraints
∑N

t=1 pk,t = 1 and
∑N

t=1 pk,t [yk(t)−µk]. Therefore

γk = −N implying that

pk,t =
1

N
· 1

1 + λk [yk(t) − µk]
(A.3)

where λk = λk(µk) is chosen as a solution to

N
∑

t=1

pk,t [yk(t) − µk] =
1

N
·

N
∑

t=1

yk(t) − µk

1 + λk [yk(t) − µk]
(A.4a)

= 0. (A.4b)

Substituting (A.3) into the multinomial log likelihood yields

N
∑

t=1

ln pk,t = −N lnN + Ξk(λk; µk) (A.5)

where Ξk(λk; µk) was defined in (4.8b). To satisfy (A.4a), we need to minimize the above expression with

respect to λk, yielding the convex dual formulation in (4.8). Assuming (4.5), all estimates of the multinomial

probabilities need to satisfy

0 < pk,t =
1

N
· 1

1 + λk [yk(t) − µk]
< 1 (A.6)

and (4.9) is obtained by using the second inequality in (A.6) for all t ∈ {1, 2, . . . , N}. Finally, the first two

derivatives of Ξk(λk; µk) with respect to λk are

∂Ξk(λk; µk)

∂λk
= −

N
∑

t=1

yk(t) − µk

1 + λk [yk(t) − µk]
(A.7a)

∂2
Ξk(λk; µk)

∂λ2
k

=
N

∑

t=1

[yk(t) − µk]
2

{1 + λk [yk(t) − µk]}2
(A.7b)
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and the Newton-Raphson iteration (4.10) follows.

Least Favorable Families and CRB for µk Under the Empirical Likelihood Model: We derive the CRB for

µk under the empirical likelihood measurement-error model and sketch a proof that the empirical-likelihood

approach employs a least favorable nonparametric distribution family for estimating µk.

We first differentiate the empirical log likelihood in (4.8a) with respect to µk:

dlk(µk)

dµk

= Nλk(µk) (A.8)

which follows by using (A.3)–(A.4) and the constraint
∑N

t=1 pk,t = 1. Then

d2lk(µk)

dµ2
k

= N · dλk(µk)

dµk

(A.9)

where dλk(µk)/dµk can be computed by differentiating (A.4a) [with λk evaluated at λk(µk)]:

d

dµk

{

N
∑

t=1

yk(t) − µk

1 + λk(µk) [yk(t) − µk]

}

= 0 (A.10a)

leading to

dλk(µk)

dµk

=
{

N
∑

t=1

[yk(t) − µk]
2

{1 + λk(µk) [yk(t) − µk]}2

}−1

·
{

λk(µk) ·
N

∑

t=1

yk(t) − µk

{1 + λk(µk) [yk(t) − µk]}2
− N

}

(A.10b)

and, consequently,

−d2lk(µk)

dµ2
k

= N
{

N
∑

t=1

[yk(t) − µk]
2

{1 + λk(µk) [yk(t) − µk]}2

}−1

·
{

N − λk(µk) ·
N

∑

t=1

yk(t) − µk

{1 + λk(µk) [yk(t) − µk]}2

}

. (A.11)

Then, assuming the discrete uniform distribution of the observations yk(1), yk(2), . . . , yk(N), the CRB for

estimating µk is given by (4.11), which follows from the fact that the discrete uniform distribution of the

observations implies µk = yk and λk(yk) = 0. Note that (4.11) closely resembles the well-known CRB

expression for µk under the parametric Gaussian measurement-error model in Section IV-A.1 (see e.g. [45,

eq. (3.9)]):

CRBG =
σ2

k

N
. (A.12)

In particular, (4.11) is a good estimate of (A.12). Hence, the empirical likelihood approach employs a least

favorable nonparametric distribution family for estimating µk. This conclusion follows from the notion that

a least favorable nonparametric family is one in which the estimation problem (i.e. estimating µk in our

case) is “as hard as in a parametric problem” (corresponding to the Gaussian measurement-error model in

the above example), see also the discussion in [32, Ch. 9.6], [33], [42, Sect. 2.3], and [46, Ch. 22.7].
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APPENDIX B. EMPIRICAL ENTROPY AND CRB FOR ESTIMATING µk

We utilize Lagrange multipliers to solve the constrained optimization problem in (4.13) [subject to the

constraints (4.4b)]: Define

Gk =
N

∑

t=1

Npk,t ln(Npk,t) + γk ·
(

N
∑

t=1

pk,t − 1
)

− Nλk ·
N

∑

t=1

pk,t [yk(t) − µk]

= N lnN + N
N

∑

t=1

pk,t ln(pk,t) + γk ·
(

N
∑

t=1

pk,t − 1
)

− Nλk ·
N

∑

t=1

pk,t [yk(t) − µk] (B.1)

where γk and λk are Lagrange multipliers. Setting the partial derivatives of Gk with respect to pk,t to zero

yields

N + γk + N ln(pk,t) − Nλk [yk(t) − µk] = 0 (B.2)

for t = 1, 2, . . . , N . Finding γk that satisfies the constraint
∑N

t=1 pk,t = 1 leads to the following expressions

for the multinomial probabilities:

pk,t =
exp{λk [yk(t) − µk]}

∑N
τ=1 exp{λk [yk(τ) − µk]}

=
exp[λk yk(t)]

∑N
τ=1 exp[λk yk(τ)]

. (B.3)

Finally, the constraint
∑N

t=1 pk,t [yk(t) − µk] = 0 is satisfied by finding λk = λk(µk) that solves

N
∑

t=1

exp{λk [yk(t) − µk]} · [yk(t) − µk] = 0. (B.4)

Note that (B.4) is an increasing function of λk and that satisfying (B.4) is equivalent to minimizing ζk(λk; µk)

in (4.15) with respect to λk. Finally, the first two derivatives of ζk(λk; µk) with respect to λk are

∂ζk(λk; µk)

∂λk
=

N
∑

t=1

exp{λk [yk(t) − µk]} · [yk(t) − µk] (B.5a)

∂2ζk(λk; µk)

∂λ2
k

=

N
∑

t=1

exp{λk [yk(t) − µk]} · [yk(t) − µk]
2 (B.5b)

and the Newton-Raphson iteration (4.16) follows.

Least Favorable Families and CRB for µk Under the Empirical Entropy Model: We derive the CRB for µk

under the empirical entropy measurement-error model and sketch a proof that the empirical-entropy approach

employs a least favorable nonparametric distribution family for estimating µk.

We first differentiate the nonparametric log likelihood (4.17) for the empirical entropy model with respect

to µk:

dlk(µk)

dµk
= N · dλk(µk)

dµk
· (yk − µk). (B.6)

To derive (B.6), we have used the identity:

N
∑

t=1

exp[λk(µk) yk(t)] · [yk(t) − µk] = 0 (B.7)



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, 2006 25

which follows from (B.4). We now compute dλk(µk)/dµk by differentiating (B.7):

d

dµk

{

N
∑

t=1

exp[λk(µk) yk(t)] · [yk(t) − µk]
}

= 0 (B.8a)

leading to

dλk(µk)

dµk
=

∑N
t=1 exp[λk(µk) yk(t)]

∑N
t=1 exp[λk(µk) yk(t)] · [yk(t) − µk]2

(B.8b)

where we have used (B.7) to obtain (B.8b). Finally,

d2lk(µk)

dµ2
k

= N · d2λk(µk)

dµ2
k

· (yk − µk) − N · dλk(µk)

dµk
. (B.9)

Then, assuming the discrete uniform distribution of the observations yk(1), yk(2), . . . , yk(N), we have µk =

yk, λk(yk) = 0, and

−d2lk(yk)

dµ2
k

=
N

s2
k

(B.10)

which follows by using (B.8b). Therefore, (4.11) holds, implying that estimating µk is as hard as in a

parametric Gaussian model and, consequently, the empirical entropy approach employs a least favorable

nonparametric distribution family (see also Appendix A).

APPENDIX C. ICM DETECTOR FOR THE GAUSSIAN MEASUREMENT-ERROR MODEL

Under the Gaussian measurement-error model (4.2) in Section IV-A.1, the conditional predictive log likeli-

hoods in (3.1) simplify to

Lk

(

1 | Nβ(k)
)

= max
µk>0, σ2

k

{

N
∑

t=1

ln pnoisek

(

yk(t) − µk ; σ2
k

)}

+ ln pβk|Nβ(k)

(

1|Nβ(k)
)

=

{ −N/2 − (N/2) · ln(s2
k) + ln pβk|N (k)

(

1|N (k)
)

, yk > 0
−N/2 − (N/2) · ln(s2

0,k) + ln pβk|N (k)

(

1|Nβ(k)
)

, yk ≤ 0
(C.1a)

Lk

(

0 | Nβ(k)
)

= max
σ2

k

{

N
∑

t=1

ln pnoisek

(

yk(t) ; σ2
k

)}

+ ln pβk|Nβ(k)

(

0|N (k)
)

= −N/2 − (N/2) · ln(s2
0,k) + ln pβk|Nβ(k)

(

0|Nβ(k)
)

(C.1b)

and (4.20b) follows.

APPENDIX D. ICM DETECTOR FOR NONPARAMETRIC MEASUREMENT-ERROR MODELS

We specialize Step (ICM2) of the ICM algorithm to the nonparametric measurement-error models in Section

IV-A.2. Here, the conditional predictive log likelihoods in (3.1) simplify to

Lk

(

1 | Nβ(k)
)

= max
µk>0

{lk(µk)} + ln pβk|Nβ(k)

(

1|Nβ(k)
)

(D.1a)

Lk

(

0 | Nβ(k)
)

= lk(0) + ln pβk|Nβ(k)

(

0|Nβ(k)
)

. (D.1b)
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We now show that, for κ = 0 and κ = −1

max
µk>0

[lk(µk)] =

{

−N lnN, yk > 0
lk(0), yk ≤ 0

(D.2)

Proof of (D.2) for Empirical Likelihood: Consider the empirical likelihood model (κ = 0). Then, the

result for yk > 0 follows from (4.7a).

We now focus on the case where yk ≤ 0. Then, for µk > 0, the expression in (A.4a) is negative at λk = 0.

Since (A.4a) is a decreasing function of λk, the optimal λk which solves (A.4) for any µk > 0 must be

negative. Then, (A.8) implies that, in this case, lk(µk) is a decreasing function of µk and (D.2) follows.

Proof of (D.2) for Empirical Entropy: Consider now the empirical entropy model (κ = −1). Then, the

result for yk > 0 follows by noting that

• λk(yk) = 0 solves (B.4) and

• the nonparametric log likelihood for the empirical entropy model is maximized at µk = yk, which

follows by setting dlk(µk)/dµk in (B.6) to zero and noting that dλk(µk)/dµk is always positive [see

(B.8b)].

In the case where yk ≤ 0 and µk > 0, the derivative dlk(µk)/dµk in (B.6) is negative. Therefore, lk(µk) is

a decreasing function of µk and (D.2) follows.

Finally, substituting (D.1) and (D.2) into (4.24a) yields (4.24b).

APPENDIX E. GLR TESTS FOR µk UNDER NONPARAMETRIC MEASUREMENT-ERROR MODELS

We derive the empirical likelihood and entropy GLR tests in Section IV-D. Under the null hypotheses H0,k :

µk = 0, the asymptotic distribution of the GLR test statistics

2 max
µk>0

{lk(µk)]} − 2 lk(0) = [−2N lnN − 2 lk(0)] · i[0,∞)(yk) (E.1)

is given by, for l ≥ 0,

lim
N→∞

P (lk ≤ l) = 1
2 P (χ2

1 ≤ l) + 1
2 (E.2)

which follows by adapting the results in [32, Th. 2.2], [34, Sect. 2.3] (for empirical likelihood) and [41], [42]

(for empirical entropy). to the one-sided testing problem in Section IV. Here, χ2
1 denotes a random variable

having a central χ2 distribution with one degree of freedom and can be obtained by squaring a standard

normal random variable. The second term in (E.2) corresponds to the probability that yk < 0 under H0,k,

which is 1/2; in this case, the GLR test statistics (E.1) becomes zero.

Note that (4.25a) follows by using the square root of (E.1) as the test statistics, which is possible because

−N lnN − lk(0) are non-negative. Then, (E.2) implies that a specified false-alarm probability PFA will be
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achieved by comparing
√

2 [−N lnN − lk(0)] · i[0,∞)(yk) (E.3)

with the threshold τNP, computed using (4.25b).
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