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Abstract

We propose a Bayesian method for complex amplitude estimation in low-rank interference. We assume that the

received signal follows the generalized multivariate analysis of variance (GMANOVA) patterned-mean structure and is

corrupted by low-rank spatially correlated interference and white noise. An iterated conditional modes (ICM) algorithm

is developed for estimating the unknown complex signal amplitudes and interference and noise parameters. We also

discuss initialization of the ICM algorithm and propose a (non-Bayesian) adaptive-matched-filter (AMF) signal detector

that utilizes the ICM estimation results. Numerical simulations demonstrate the performance of the proposed methods.

I. INTRODUCTION

The topic of signal detection and estimation in low-rank interference has recently attracted considerable attention (see

e.g. [1]–[6] and references therein) as it has great potential in many signal-processing applications facing the curse-

of-dimensionality problem and data (or ”snapshot”) constraints [4], [5]. In space-time adaptive processing (STAP) for

radar, low-rank interference is due to clutter and jamming, see e.g. [6]–[8]. In [3] and [9], maximum likelihood (ML)

and least-squares estimators of low-rank covariance matrices are derived assuming that secondary (interference-plus-

noise only) data is available. Structured ML covariance estimation from interference-only measurements is discussed

in [10]. Intrinsic Cramér-Rao bounds (CRBs) for low-rank subspace estimation are developed in [1] and low-rank

subspace tracking is discussed in [11]. Bayesian and non-Bayesian approaches for complex amplitude estimation have

been developed and analyzed in [12]–[13] and [14]–[17] (see also references therein) assuming unstructured covariance

matrix of interference and noise. A Bayesian approach for estimating interference-plus-noise covariance matrices in

knowledge-aided radar is outlined in [18], where numerous examples of available a priori information are given for the

radar problem. The methods in [12]–[18] ignore the low-rank structure of the interference. In this paper, we develop

an iterated conditional modes (ICM) algorithm for Bayesian estimation of complex signal amplitudes in low-rank

interference and propose a (non-Bayesian) adaptive-matched-filter (AMF) detector that utilizes the ICM estimates of

the unknown parameters. Computational complexity of our iterative scheme does not depend on the array size; rather,

it is determined by the ranks of signal and interference.

†This work was supported by the National Science Foundation under Grant CCF-0545571.
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Measurement model and prior specifications are introduced in Section II, where we also justify use of the Bayesian

methodology. In Section III, we develop the ICM algorithm for Bayesian complex amplitude estimation, discuss its

initialization and interference rank estimation (Section III-A), and derive an AMF signal detector (Section III-B). In

Section IV, we evaluate the performance of the proposed methods via numerical simulations. Concluding remarks are

given in Section V.

II. MEASUREMENT MODEL AND PRIOR SPECIFICATIONS

Denote by y(t) an m ⇥ 1 complex data vector (snapshot) received at time t and assume that we have collected N

snapshots. Consider the following model for the received snapshots:

y(t) = AXφ(t) + Bh(t) + e(t), t = 1, . . . , N (2.1)

where the first term describes the generalized multivariate analysis of variance (GMANOVA) patterned mean-signal

structure with a known m⇥ q signal array-response matrix A (m ≥ q), known d⇥ 1 signal temporal response vectors

φ(t), t = 1, 2, . . . , N (d  N), and an q ⇥ d matrix X of unknown complex signal amplitude coefficients. (See [14]

and references therein for a detailed exposition on the GMANOVA model and its applications.) The second term in

(2.1) corresponds to low-rank interference described by

• an unknown m ⇥ r interference array-response matrix B (m ≥ r) and

• random zero-mean independent, identically distributed (i.i.d.) r ⇥ 1 vectors h(t), t = 1, 2, . . . , N of interference

signals following a circularly symmetric complex Gaussian distribution with unknown covariance σ2
Σ . (Here, Σ

is a normalized covariance matrix of the interference signals.)

Finally, e(t) is zero-mean circularly symmetric i.i.d. complex Gaussian noise with covariance σ2Im, where σ2 is

unknown noise variance and Im denotes the identity matrix of size m. Denote by ξ the set of all unknown parameters:

ξ = {X, B,Σ , σ2} (2.2)

where Σ is a positive-semidefinite Hermitian matrix. We allow the interference rank r to be unknown as well, estimated

in the initialization stage (i.e. separately from the estimation of ξ), see Section III-A.

We define the data, temporal signal response, and interference-signal matrices:

Y = [y(1) · · ·y(N)], Φ = [φ(1),φ(2) · · ·φ(N)], H = [h(1),h(2) · · ·h(N)] (2.3)

and assume that Φ has full rank equal to d. Before we proceed, let us introduce the following definition: a matrix-variate

circularly symmetric complex Gaussian probability density function (pdf) of an p⇥ q random matrix Z with mean M

(of size p ⇥ q) and positive-definite covariance matrices S and Φ (of dimensions p ⇥ p and q ⇥ q, respectively) is

Np×q(Z;M,S,Φ) =
1

πpq |S|q · |Φ|p
· exp

{
− tr[Φ−1(Z − M)HS−1(Z − M)]

 
(2.4)
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where | · |, tr(·), and “H” denote the determinant, trace, and Hermitian (conjugate) transpose. This definition is an

extension of [19, eq. (2.7.4)] and [20, Definition 1.1] to the complex-data case.

The model description (2.1)–(2.3) leads to the likelihood function of the unknown parameters:

p(Y | ξ) = Nm×N

⇣
Y ;AXΦ,R(B,Σ , σ2), IN

⌘
(2.5a)

where p(Y | ξ) denotes the conditional pdf of Y given ξ,

R(B,Σ , σ2) = E {[Bh(t) + e(t)] [Bh(t) + e(t)]H} = σ2 R(B,Σ ) (2.5b)

is the spatial covariance matrix of interference and noise, and

R(B,Σ ) = Im + BΣBH . (2.5c)

This measurement model is equivalently represented using a two-stage hierarchical formulation:

p(Y |X, B,H, σ2) = Nm×N (Y ;AXΦ + BH,σ2Im, IN ) (2.6a)

p(H |Σ , σ2) = Nr×N (H; 0r×N , σ2
Σ , IN ) (2.6b)

where 0r×N denotes the r ⇥ N matrix of zeroes.

A. Prior Specifications

We assume that the unknown parameters are independent a priori, i.e.

π(ξ) = π(X, B,Σ , σ2) = π(X) · π(B) · π(Σ ) · π(σ2). (2.7a)

Here, π(ξ) denotes the prior pdf of ξ and analogous notation is used for the prior pdfs of the components of ξ. Let

us adopt an (improper) “flat” Jeffreys’ noninformative prior pdf for the complex signal amplitudes1

π(X) / 1 (2.7b)

and select conjugate prior pdfs for the noise and interference parameters:2

π(σ2) = Inv-χ2(σ2 ; 2 νσ2 , σ2
0) / (σ2)−(1+ν

σ
2 ) · exp(−νσ2 · σ2

0/σ2) (2.7c)

π(B) / Nm×r(B;MB, Im,ΓB) (2.7d)

π(Σ ) = Inv-Wishartr

⇣
Σ ; νΣ , [(νΣ − r)Λ0]

−1
⌘
/ |Σ |−(r+νΣ ) · exp[−(νΣ − r) · tr(Σ−1

Λ0)] (2.7e)

where

1See [21, Ch. 2.9] for an introduction to noninformative prior distributions.
2Utilizing conjugate priors simplifies Bayesian computations.
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• Inv-χ2(σ2; 2 νσ2 , σ2
0) denotes the pdf of a scaled inverse chi-square distribution with 2 νσ2 degrees of freedom

and a scale parameter σ2
0 , see [21, p. 50 and App. A];3

• Inv-Wishartr(Σ ; νΣ ,Σ−1
0 ) denotes the pdf of an r⇥r random matrix Σ having complex inverse Wishart distribution

with νΣ degrees of freedom and positive definite Hermitian r ⇥ r scale matrix Σ0;4

• prior mean and precision matrices MB and Γ
−1
B (of dimensions m⇥ r and r⇥ r, respectively) quantify our prior

knowledge about the interference array response B.

The degrees of freedom νΣ and νσ2 can be interpreted as numbers of virtual “observations” describing our prior

knowledge about Σ and σ2, where each “observation” is equal to Λ0 or σ2
0 , respectively. Prior information about the

noise level σ2 is available in many applications (e.g. in systems operating at the microwave frequencies, see [3]), thus

justifying use of informative priors for π(σ2) and the Bayesian approach in general. Complex inverse-Wishart priors

have been utilized in [18] to improve estimation of interference-plus-noise covariance matrices in knowledge-aided

radar. The interference array response prior (2.7d) can be constructed from previous estimates of B. The Bayesian

framework allows us to utilize sequential-Bayesian ideas and track the interference. In practice, we may select the

precision Γ
−1
B to be a diagonal matrix whose diagonal elements describe prior precisions of the interference array-

response vectors (i.e. the columns of B). Lack of prior information on B can be expressed by choosing a “flat”

noninformative prior with Γ
−1
B = 0r×r.

III. BAYESIAN ESTIMATION OF COMPLEX SIGNAL AMPLITUDES AND APPLICATION TO ADAPTIVE DETECTION

We first develop a Bayesian approach for estimating the unknown parameters ξ under the measurement and prior models

in Section II and then discuss its application to adaptive signal detection. The joint posterior pdf of the parameters ξ

and random interference signals H is given by

p(ξ,H |Y ) / p(Y |X, B,H, σ2) · p(H|Σ , σ2) · π(X) · π(B) · π(Σ ) · π(σ2)

/ |σ2Im|−N exp
{
− tr[(Y − AXΦ − BH) (Y − AXΦ − BH)H ]/σ2

 

·|σ2
Σ |−N exp

⇥
− tr(Σ−1HHH)/σ2

⇤
· exp

{
− tr[(B − MB)Γ

−1
B (B − MB)H ]

 

·|Σ |−(r+νΣ ) · exp[−(νΣ − r) · tr(Σ−1
Λ0)] · (σ

2)−(1+ν
σ
2 ) · exp(−νσ2 · σ2

0/σ2) (3.1a)

3Provided that ν
σ
2 > 1, the mean of the Inv-χ2(σ2 ; 2 ν

σ
2 , σ2

0) pdf is ν
σ
2/(ν

σ
2 − 1) · σ2

0 .
4Provided that νΣ > r, the mean of the Inv-Wishartr(Σ ; νΣ ,Σ−1

0
) pdf is (νΣ − r)−1

·Σ0 (see [22, eq. (39)]); consequently, the mean of the

prior pdf in (2.7e) is Λ0. See [22] for a detailed discussion on complex inverse-Wishart distribution.
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implying that

p(H | ξ, Y ) = Nr×N

⇣
H; (ΣBHB + Ir)

−1
ΣBH (Y − AXΦ), σ2 · (ΣBHB + Ir)

−1
Σ , IN

⌘
(3.1b)

p(B |X, H,Σ , σ2, Y ) = Nm×r

⇣
B; [(Y − AXΦ)HH + σ2 MBΓ

−1
B ] (HHH + σ2

Γ
−1
B )−1, Im,

σ2 · (HHH + σ2
Γ

−1
B )−1

⌘
(3.1c)

which follow by keeping the terms in (3.1a) that depend on H and B (respectively) and completing the squares in

the exponents of the resulting expressions. The result (3.1b) is consistent with the well-known result in [23, eqs.

(15.64)–(15.67)]. Integrating H out from (3.1a) yields the posterior pdf of ξ:

p(ξ |Y ) / p(Y | ξ) · π(X) · π(B) · π(Σ ) · π(σ2)

/
1

|σ2R(B,Σ )|N
· exp{− tr[R(B,Σ )−1(Y − AXΦ)(Y − AXΦ)H ]/σ2}

· exp
{
− tr[(B − MB)Γ

−1
B (B − MB)H ]

 

·|Σ |−(r+νΣ ) · exp[−(νΣ − r) · tr(Σ−1
Λ0)] · (σ

2)−(1+ν
σ
2 ) · exp(−νσ2 · σ2

0/σ2) (3.2)

and the conditional pdf p(X |B,Σ , σ2, Y ) follows by keeping the terms in (3.2) that depend on X and completing

the squares in the exponent:

p(X |σ2, B,Σ , Y ) = Nq×d

⇣
X; bX(B,Σ ), [AHR(B,Σ , σ2)−1A]−1, (ΦΦ

H)−1
⌘

(3.3a)

where

bX(B,Σ ) = [AHR(B,Σ )−1A]−1AHR(B,Σ )−1Y Φ
H(ΦΦ

H)−1 (3.3b)

which is consistent with the real-data result in [20, Theorem 6.7]. If we “vectorize” X , then (3.3a) implies that the

posterior covariance matrix of vec (X) given σ2, B,Σ , and Y is equal to the (non-Bayesian) CRB of vec (X) in [17,

eq. (66)] and [15, App. 4.D].5 Let us integrate X out from the joint pdf p(X, σ2 |B,Σ , Y ) [see also (3.2) and (3.3a)]:

p(σ2 |B,Σ , Y ) =
p(X, σ2 |B,Σ , Y )

p(X |σ2, B,Σ , Y )

/
|σ2R(B,Σ )|−N · exp

⇣
− tr[R(B,Σ )−1 (Y − AXΦ) (Y − AXΦ)H ]/σ2

⌘
· (σ2)−(1+ν

σ
2 ) · exp(−νσ2 · σ2

0/σ2)

(σ2)−q d · exp
⇣
− tr{[X − bX(B,Σ )]H AHR(B,Σ )−1A [X − bX(B,Σ )]Φ ΦH}/σ2

⌘ (3.4a)

/ (σ2)−(mN+1+ν
σ
2−q d) · exp

⇣
− tr{R(B,Σ )−1 [Y − A bX(B,Σ )Φ] · [Y − A bX(B,Σ )Φ]H}/σ2 − νσ2 · σ2

0/σ2
⌘

= Inv-χ2
⇣
σ2 ; 2 (mN − q d + νσ2), bσ2(B,Σ ) · (mN + 1 − q d + νσ2)/(mN − q d + νσ2)

⌘
(3.4b)

where bσ2(B,Σ ) denotes the mode of the pdf in (3.4b) (see [21, App. A]):

bσ2(B,Σ ) =
tr
{
R(B,Σ )−1 [Y − A bX(B,Σ )Φ] [Y − A bX(B,Σ )Φ]H

 
+ νσ2 · σ2

0

mN + 1 − q d + νσ2

. (3.4c)

5Here, the vec operator stacks the columns of a matrix one below another into a single column vector.
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Here, (3.4b) follows by noting that p(σ2 |B,Σ , Y ) does not depend on X and setting X = bX(B,Σ ) in (3.4a).

We now estimate the unknown parameters ξ using an ICM approach [24, Sect. 4], [25, Ch. 10.2.1], [26, Ch. 6.2.2].

Our ICM algorithm consists of cycling between the following steps:

1) Fix B = bB, Σ = bΣ and estimate X by maximizing the conditional posterior pdf p(X |B,Σ , σ2, Y ) [see

also (3.3b)]: bX = bX(B,Σ ). (3.5a)

2) Fix B = bB, Σ = bΣ and estimate σ2 by maximizing the conditional posterior pdf p(σ2 |B,Σ , Y ) in (3.4):

bσ2 = bσ2(B,Σ ). (3.5b)

3) Fix B = bB, X = bX, σ2 = bσ2 and estimate Σ by maximizing the conditional posterior pdf p(Σ |X, B, σ2, Y ).

For this purpose, we utilize an expectation-maximization (EM) step where we treat the random interference

signals H as the unobserved (or missing) data:

bΣ = arg max
Σ

E H|Σ=Σp,X,B,σ2,Y

{
ln p(ξ,H |Y )

 
(3.5c)

where Σp denotes the estimate of Σ from the previous iteration and E H|Σ ,X,B,σ2,Y the expectation with

respect to p(H |Σ , X,B, σ2, Y ) = p(H | ξ, Y ) in (3.1b). (See [21, Ch. 12.3] for a detailed exposition on

EM-type algorithms in the Bayesian context.) Consequently,

bΣ =
1

N + r + νΣ

· [ bH bHH/σ2 + N · (ΣpB
HB + Ir)

−1
Σp + (νΣ − r) · Λ0] (3.5d)

where bH = (ΣpB
HB + Ir)

−1
ΣpB

H (Y − AXΦ).

4) Fix X = bX, Σ = bΣ , σ2 = bσ2 and estimate B by maximizing the conditional posterior pdf p(B |X,Σ , σ2, Y ).

As before, we treat H as the missing data and utilize the following EM step:

bB = arg max
B

E H|B=Bp,X,Σ ,σ2,Y

{
ln p(ξ,H |Y )

 
(3.5e)

where Bp denotes the estimate of B from the previous iteration. Consequently,

bB = {(Y − AXΦ) eHH + σ2 MBΓ
−1
B } ·

⇥ eH eHH + N · σ2 · (ΣBH
p Bp + Ir)

−1
Σ + σ2

Γ
−1
B

⇤−1
(3.5f)

where eH = (ΣBH
p Bp + Ir)

−1
ΣBH

p (Y − AXΦ).

This iterative scheme can also be viewed as a parameter-expanded expectation-maximization (PX-EM) algorithm [21,

Ch. 12.3]. Here, parameter expansion refers to the fact that B and Σ overparametrize the interference. The computation

of R(B,Σ )−1 in Steps 1) and 2) is performed efficiently using the matrix inversion lemma (e.g. [27, Theorem 18.2.8]):

R(B,Σ )−1 = (Im + BΣBH)−1 = Im − B (ΣBHB + Ir)
−1

Σ BH (3.6)
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which requires inversion of an r⇥ r matrix and thus leads to significant computational savings compared with directly

inverting R(B,Σ ). We utilize (3.6) to simplify Steps 1) and 2) and summarize the resulting ICM algorithm: compute

P (i) = [Σ (i)(B(i))HB(i) + Ir]
−1

Σ
(i) (3.7a)

X(i) =
⇥
AHA − AHB(i)P (i)(B(i))HA

⇤−1
[AHY − AHB(i)P (i)(B(i))HY ]ΦH(ΦΦ

H)−1 (3.7b)

H(i) = P (i) (B(i))H (Y − AX(i)
Φ) (3.7c)

(σ2)(i) =
n

tr
⇥
((Y − AX(i)

Φ − B(i)H(i)) (Y − AX(i)
Φ)H

⇤
+ νσ2 · σ2

0

o/
(mN + 1 − q d + νσ2) (3.7d)

T (i) = H(i) (H(i))H + N · (σ2)(i) · P (i) (3.7e)

and update the interference parameters as follows:

Σ
(i+1) =

1

N + r + νΣ

·
n T (i)

(σ2)(i)
+ (νΣ − r) · Λ0

o
(3.8a)

B(i+1) =
⇥
(Y − AX(i)

Φ) (H(i))H + (σ2)(i) MB Γ
−1
B

⇤ ⇥
T (i) + (σ2)(i) Γ

−1
B

⇤−1
. (3.8b)

The above iteration is performed until the unknown parameters ξ(i) do not change significantly between two consecutive

cycles. Each cycle requires one q⇥ q and two r⇥ r matrix inversions. Hence, this method is computationally efficient

in applications with the signal and interference ranks q and r much smaller than m, such as STAP [6]–[8], [18] where

m is the product of the numbers of sensors and pulse returns, see also [4] and [5]. Our ICM algorithm also provides

estimates of the interference signals H , see (3.7c). Observe the intuitively appealing weighted-average forms of the

expressions (3.7d), (3.8a), and (3.8b), where the weights of the prior terms are dictated by the prior degrees of freedom

νσ2 , νΣ and precision Γ
−1
B , respectively.

In the following, we describe initialization of the ICM iteration and AMF signal detection.

A. Initialization and Interference Rank Estimation

Our initialization scheme is based on the matrix Y [IN − Φ
H(ΦΦ

H)−1
Φ]Y H which is complex Wishart with N − d

degrees of freedom and scale R(B,Σ , σ2). (This is a standard result in multivariate analysis of variance (MANOVA)

whose real-Wishart version is given in e.g. [28, Ch. 2.2].) Then

S =
1

N − d
· Y [IN − Φ

H(ΦΦ
H)−1

Φ]Y H (3.9a)

is an unbiased estimator of R(B,Σ , σ2) with eigenvalue decomposition

S = [u(1),u(2) · · ·u(m)] diag{λ1, λ2, . . . , λm} [u(1),u(2) · · ·u(m)]H (3.9b)

where λ1 ≥ λ2 ≥ · · ·λm ≥ 0 are the eigenvalues and u(1),u(2) · · ·u(m) are the corresponding eigenvectors of S.

Then, define

eσ2 =

Pmin{m,N−d}
i=r+1 λi

min{m,N − d} − r
(3.9c)
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and initialize the iteration (3.7)–(3.8) using

B(0) = [u(1) · · ·u(r)], Σ
(0) =

diag{λ1, λ2, . . . , λr}

eσ2
− Ir. (3.9d)

The above estimates can be computed efficiently using the algorithms in [11] and should be utilized when diffuse

priors are employed for the unknown parameters; otherwise, prior information should be incorporated into the initial

values as well.

Interference Rank Estimation: If the interference rank r is not known, we estimate it in the initialization stage using

the minimum-description-length (MDL) criterion (derived along the lines of [29]):

rMDL = arg max
r∈{1,2,...,nMIN−1}

n
nMAX·

⇣ nMINX

i=r+1

lnλi

⌘
−(nMIN−r) nMAX·ln

⇣PnMIN

l=r+1 λl

nMIN − r

⌘
− 1

2 r (2nMIN−r) lnnMAX

o
(3.10)

where nMIN = min{m,N − d} and nMAX = max{m,N − d}. If nMIN is extremely small, the MDL approach performs

poorly and better estimation of r can be achieved using statistical eigen-inference in [30], [31].

Here, we adopt a “plug-in” approach: once we estimate r = rMDL, we treat it as if it were known and proceed with

the initialization (3.9c)–(3.9d) and ICM iteration.

B. Adaptive Matched Filter Signal Detection

We propose the following AMF detector for testing H0 : X = 0q×d (signal absent) versus the alternative H1 : X 6= 0q×d

(signal present):

Compare the test statistic AMF
(
ξ(∞)

)
with a threshold τ and declare the presence of signal if AMF

(
ξ(∞)

)
> τ

where AMF(ξ) = tr
⇥
XHAHR(B,Σ , σ2)−1AXΦ Φ

H
⇤

is the matched-filter test statistic for the above testing problem

assuming that the parameters ξ are known. (The AMF approach to signal detection was introduced in [32] and [33].)

Here, ξ(∞) denotes the estimate of ξ obtained upon convergence of the ICM algorithm; consequently, we refer to the

proposed detector as the AMF ICM detector. Note that AMF(ξ(∞)) can be further simplified using (3.6) [see also

(3.7a)]:

AMF
(
ξ(∞)

)
=

1

(σ2)(∞)
· tr

n
(X(∞))H [AHA − AHB(∞)P (∞)(B(∞))HA]X(∞)

Φ Φ
H
o

. (3.11)

IV. NUMERICAL EXAMPLES

Consider an m = 50-sensor uniform linear antenna array with array response

a(ϕ) =
⇥
1, exp(−jϕ), exp(−2jϕ), . . . , exp(−(m − 1)jϕ)

⇤T
(4.1)

where ϕ = 2π∆ sin θ/λ. Here, “T ” denotes a transpose, ∆ the interelement spacing, θ the angle of arrival, and λ the

wavelength of the center frequency. We focus on estimating and detecting the complex amplitude X = x of a planewave
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signal arriving from direction ϕs, implying that q = d = 1 and signal array and temporal responses are vectors:

A = a(ϕs) and Φ = [φ(1), φ(2) · · ·φ(N)] = [1, 1, . . . , 1]. We have simulated r = 6 independent Gaussian interference

sources at angles ϕ 2 {−0.8π,−0.4π, 0.2π, 0.5π, 0.7π, 0.9π} with 0, 40, 30, 20, 40, and 10 dB interference-to-white-

noise ratios (respectively), similar to the simulated interference model in [34]. We have chosen a 0 dB signal level

and direction ϕs = −0.81 π satisfying a(ϕs)
H [Im − B(BHB)−1BH ]a(ϕs)/a(ϕs)

H a(ϕs) = 0.19 implying that, in

this case, interference “nulling” leads to a significant signal-power reduction [34]. Here, the interference-to-white-noise

ratios are the diagonal elements of Σ and the signal level is abs(x/σ), where abs(·) denotes absolute value.

Diffuse Prior Specifications: We have selected diffuse prior pdfs for the unknown parameters with

• Γ
−1
B = 0r×r (corresponding to the “flat” Jeffreys’ noninformative prior for B);

• νΣ = r + 1 = 7 and Λ0 = Σ
(0) [see (3.9d) and footnote 4];

• νσ2 = 2 and σ2
0 = (νσ2 − 1)/νσ2 · eσ2 = eσ2/2 [yielding the mean of π(σ2) equal to eσ2, see (3.9c) and footnote

3].

Under this prior model, the ICM estimates ξ(∞) of the unknown parameters are approximately equal to their (non-

Bayesian) ML estimates. Consequently, the mean-square error (MSE) performance of X(∞) is bounded from below

by the CRB derived in [15, App. 4.D] and [17, App. A]. Using [27, eq. (1.25) at p. 338], we simplify the trace of this

CRB to

CRB(x) = σ2
.n⇥

a(ϕs)
Ha(ϕs) − a(ϕs)

H B (Σ BHB + Ir)
−1

Σ BH a(ϕs)
⇤
·

NX

t=1

|φ(t)|2
o

. (4.2)

Interference Rank Estimation: In all the examples, we employ the “plug-in” estimate rMDL in (3.10), computed in the

initialization stage.

Complex-Amplitude Estimation: In the first simulation example, we study the performance of the proposed estimator

of X = x. Our performance metric is the MSE of an estimator, calculated using 30 000 independent trials. (In each

trial, we generated independent interference and noise realizations.) We compare the ICM estimator of x with the

GMANOVA method for unstructured covariance matrix of interference and noise (see [14]–[16]):

bxUC =
a(ϕs)

H S−1
PN

t=1 y(t)φ(t)∗

a(ϕs)HS−1a(ϕs) ·
PN

t=1 |φ(t)|2
(4.3a)

where “∗” denotes complex conjugation and S has been defined in (3.9a). We need N ≥ rank(Φ) + m = 51 for S to

be invertible with probability one, see [14, eq. (4)]. When the number of snapshots N is smaller than this bound, we

apply diagonal loading as follows (similar to [35], see also [34] and references therein):

bxUC,DL =
a(ϕs)

H(S + δ2Im)−1
PN

t=1 y(t)φ(t)∗

a(ϕs)H(S + δ2Im)−1a(ϕs) ·
PN

t=1 |φ(t)|2
(4.3b)

where the loading factors have been selected as δ2 2
{
eσ2, 3 eσ2

 
, corresponding to 0 and 5 dB above the estimated

noise level (3.9c) [8]. In Fig. 1, we show normalized MSEs and corresponding CRBs for the following estimates of the
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Fig. 1. Normalized MSEs and CRBs for the ICM, unstructured GMANOVA, and loaded unstructured GMANOVA estimators of the complex

amplitude x as functions of the number of snapshots N , for an array with m = 50 sensors.

complex signal amplitude: (i) x(∞) obtained upon convergence of the ICM algorithm and (ii) bxUC in (4.3a) (requiring

N ≥ 51) and bxUC,DL in (4.3b), as functions of the number of snapshots N . The ICM algorithm converged within ten

iteration steps. For small N , x(∞) outperforms bxUC,DL approximately by a factor of two (in terms of MSE). Note that

the (unstructured) GMANOVA estimator bxUC performs poorly.

Signal Detection: In the second set of simulations, we compare the adaptive detector in Section III-B with several

existing methods. Our performance metric is the average probability of detection, where averaging is performed

over the random interference and noise realizations as well as Gaussian complex-amplitude realizations following the

N1×1(x; 0, σ2
x, 1) distribution. Define the output signal-to-noise ratio (SNR) as SNRo = σ2

x/CRB(x). We compare the

AMF ICM detector with

• the clairvoyant detector, which assumes perfect knowledge of the interference and noise properties and compares

tr[ bX(B,Σ )
H

AH R(B,Σ , σ2)−1 A bX(B,Σ )Φ Φ
H ] with a threshold, see also (3.3b) and (2.5b);

• generalized likelihood ratio (GLR) and loaded GLR signal detectors for unstructured covariance matrix of inter-

ference and noise, which compare

a(ϕs)
HS−1a(ϕs)

a(ϕs)H [(1/N) · Y Y H ]−1a(ϕs)

and

a(ϕs)
H(S + δ2Im)−1a(ϕs)

a(ϕs)H [(1/N) · Y Y H + δ2Im]−1a(ϕs)

(respectively) with appropriate thresholds, along the lines of [14, eq. (8)] and [34]–[35].

Fig. 2 shows the performances of the above detectors as functions of SNRo for fixed false-alarm probability PFA =

10−2. The average detection performance of the clairvoyant detector can be computed analytically and is given by
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Fig. 2. Detection probabilities of the clairvoyant, AMF, GLR and loaded GLR detectors as functions of the output SNR in decibels for (left)

N = 20 and (right) N = 55 snapshots, assuming PFA = 10−2 and an array with m = 50 sensors.

Pd,av = P
(1+SNRo)−1

FA . The AMF ICM detector outperforms other adaptive methods, with significant performance

improvement for N = 20. As expected, the unstructured GLR detector performs poorly. Note that N = 20 corresponds

to the increasingly important “snapshot-constrained” scenario [4], [5].

Clearly, the proposed estimators and detectors will achieve better performance (compared with that shown in this

section) if we utilize informative priors for the unknown interference and noise parameters.

V. CONCLUDING REMARKS

We proposed an ICM algorithm for Bayesian estimation of complex signal amplitudes in low-rank interference and an

adaptive signal detector based on the ICM estimates of the signal amplitudes and interference and noise parameters.

Interestingly, the initialization method in Section III-A is the main source of computational complexity since it

requires eigenvalue decomposition of a (potentially large) m⇥m matrix. [The diagonal-loading approaches also require

this decomposition to obtain the loading factor, see (3.9c).] If the array size m is large, then the proposed ICM algorithm

and AMF detector will be computationally efficient compared with the existing methods. Our approach also provides a

framework for avoiding the complex initialization step, in particular, utilizing sequential-Bayesian concepts will allow

interference tracking.

Further research will include: developing alternative initialization approaches and sequential-Bayesian methods for

interference tracking (possibly using the “blending” ideas in [18]) and extensions to the STAP scenarios and comparison

with related methods, such as the parametric adaptive matched filter (PAMF) in [36] and [37]. It is also of interest to

compute analytical false-alarm and detection probability expressions for the proposed adaptive detector and to study

Bayesian performance measures [38].
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[15] A. Dogandžić, “Sensor array processing in correlated noise: Algorithms and performance measures,” Ph.D. dissertation, Univ. Illinois at

Chicago, 2001.

[16] Y. Jiang, P. Stoica, and J. Li, “Array signal processing in the known waveform and steering vector case,” IEEE Trans. Signal Processing,

vol. 52, pp. 23–35, Jan. 2004.

[17] L. Xu and J. Li, “Performance analysis of multivariate complex amplitude estimators,” IEEE Trans. Signal Processing, vol. 53, pp. 3162–

3171, Aug. 2005.

[18] J.R. Guerci and E.J. Baranoski, “Knowledge-aided adaptive radar at DARPA,” IEEE Signal Processing Mag., vol. 23, pp. 41–50, Jan. 2006.

[19] M.S. Srivastava and C.G. Khatri, An Introduction to Multivariate Statistics, New York: North-Holland, 1979.

[20] J.-X. Pan and K.-T. Fang, Growth Curve Models and Statistical Diagnostics, New York: Springer-Verlag, 2002.

[21] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data Analysis, 2nd. ed., New York: Chapman & Hall, 2004.

[22] D. Maiwald and D. Kraus, ”Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices,” IEE Proc.

Radar, Sonar Navig., vol. 147, pp. 162–168, Aug. 2000.

[23] S.M. Kay, Fundamentals of Statistical Signal Processing — Estimation Theory, Englewood Cliffs, NJ: Prentice-Hall, 1993.

[24] D.V. Lindley and A.F.M. Smith, “Bayes estimates for the linear model,” J. R. Stat. Soc., Ser. B, vol. 34, pp. 1–41, 1972.

[25] M.-H. Chen, Q.-M. Shao, and J.G. Ibrahim, Monte Carlo Methods in Bayesian Computation, New York: Springer-Verlag, 2000.

[26] D.B. Rowe, Multivariate Bayesian Statistics, New York: Chapman & Hall, 2002.

[27] D.A. Harville, Matrix Algebra From a Statistician’s Perspective, New York: Springer-Verlag, 1997.

[28] E.F. Vonesh and V.M. Chinchilli, Linear and Nonlinear Models for the Analysis of Repeated Measurements, New York: Marcel Dekker,

1997.

[29] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. Acoust., Speech, Signal Processing, vol.

ASSP-33, pp. 387–392, Apr. 1985.

[30] N.R. Rao and A. Edelman, ”Statistical eigen-inference of signals in white noise,” submitted.

[31] N.R. Rao, ”Stochastic eigen-analysis and its applications” Ph.D. dissertation, Mass. Inst. Technol., in preparation.

[32] L. Cai and H. Wang, ”On adaptive filtering with the CFAR feature and its performance sensitivity to non-Gaussian interference,” Proc.

24th Annu. Conf. Inform. Sci. Syst., Princeton, NJ, 1990, pp. 558–563.

[33] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Trans. Aerospace and Electronic

Systems, vol. 28, pp. 208–216, Jan. 1992.

[34] Y.I. Abramovich and N.K. Spencer, “Expected-likelihood covariance matrix estimation for adaptive detection,” Proc. IEEE Int. Radar Conf.,

Arlington, VA, May 2005, pp. 623–628.

[35] T.F. Ayoub and A.M. Haimovich, “Modified GLRT signal detection algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, pp. 810–818,

July 2000.



13

[36] M. Rangaswamy and J.H. Michels, “A parametric multichannel detection algorithm for correlated non-Gaussian random processes,” in Proc.

IEEE National Radar Conference., Syracuse, NY, May 1997, pp. 349–354.

[37] J.R. Roman, M. Rangaswamy, D.W. Davis, Q.W. Zhang, B. Himed, and J.H. Michels, “Parametric adaptive matched filter for airborne

radar applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, pp. 677–692, Apr. 2000.

[38] H.L. Van Trees, Detection, Estimation and Modulation Theory, New York: Wiley, 1968, pt. I.

LIST OF FIGURES

1 Normalized MSEs and CRBs for the ICM, unstructured GMANOVA, and loaded unstructured GMANOVA

estimators of the complex amplitude x as functions of the number of snapshots N , for an array with

m = 50 sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Detection probabilities of the clairvoyant, AMF, GLR and loaded GLR detectors as functions of the output

SNR in decibels for (left) N = 20 and (right) N = 55 snapshots, assuming PFA = 10−2 and an array

with m = 50 sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


	Iowa State University
	Digital Repository @ Iowa State University
	3-2007

	Bayesian Complex Amplitude Estimation and Adaptive Matched Filter Detection in Low-Rank Interference
	Aleksandar Dogandžić
	Benhong Zhang

	tmp.1398894899.pdf.jOAVj

