
Black-Box Garbled RAM

Sanjam Garg

Computer Science Division

University of California, Berkeley

Berkeley, USA

Email: sanjamg@berkeley.edu

Steve Lu

Department of Computer Science

University of California, Los Angeles

Los Angeles, USA

Email: stevelu@cs.ucla.edu

Rafail Ostrovsky

Department of Computer Science

University of California, Los Angeles

Los Angeles, USA

Email: rafail@cs.ucla.edu

Abstract

Garbled RAM, introduced by Lu and Ostrovsky, enables the task of garbling a RAM (Random Access Machine) program
directly, there by avoiding the inefficient process of first converting it into a circuit. Garbled RAM can be seen as a RAM
analogue of Yao’s garbled circuit construction, except that known realizations of Garbled RAM make non-black-box use of the
underlying cryptographic primitives.

In this paper we remove this limitation and provide the first black-box construction of Garbled RAM with polylogarithmic
overhead. Our scheme allows for garbling multiple RAM programs being executed on a persistent database and its security
is based only on the existence of one-way functions. We also obtain the first secure RAM computation protocol that is both
constant round and makes only black-box use of one-way functions in the Oblivious Transfer hybrid model.

Keywords

Garbled RAM; Black-Box Cryptography; One-Way Functions; Secure Computation

I. INTRODUCTION

Alice wants to store a large private database D on the cloud in an encrypted form. Subsequently, Alice wants the cloud

to be able to compute and learn the output of arbitrary dynamically chosen private programs P1, P2, . . . on private inputs

x1, x2, . . . and the previously stored dataset, which gets updated as these programs are executed. Can we do this?

The above problem is a special case of the general problem of secure computation [Yao82], [GMW87]. In the past three

decades of work, both theoretical and practical improvements have been pushing the limits of the overall efficiency of such

schemes. However most of these constructions work only for circuits and securely computing a RAM program involves

the inefficient process of first converting it into a circuit. For example, Yao’s approach requires that the program be first

converted to a circuit — the size of which will need to grow at least with the size of the input. Hence, in the example

above, for each program that Alice wants the cloud to compute, it will need to send a message that grows with the size

of the database. Using fully homomorphic encryption [Gen09] we can reduce the size of Alice’s message, but the cloud

still needs to compute on the entire encrypted database. Consequently the work of the cloud still grows with the size of

the database. These solutions can be prohibitive for various applications. For example, in the case of binary search the size

of the database can be exponentially larger than execution path of the insecure solution. In other words security comes

at the cost of a exponential overhead. We note that additionally even in settings where the size of the database is small,

generic transformations from Random Access Machine (RAM) programs with running time T result in a circuit of size

O(T 3 log T) [CR73], [PF79], which can be prohibitively inefficient.
Secure computation for RAM programs: Motivated by the above considerations, various secure computation techniques

that work directly for RAM programs have been developed. However all known results have interesting theoretical bottlenecks

that influences efficiency, either in terms of round complexity or in their non-black-box use of cryptographic primitives.

- For instance, Ostrovsky and Shoup [OS97] show how general secure RAM computation can be done using oblivious

RAM techniques [Gol87], [Ost90], [GO96]. Subsequently, Gordon et al. [GKK+12] demonstrated an efficient realization

based on specialized number-theoretic protocols. In follow up works, significant asymptotic and practical efficiency

improvements have been obtained by Lu and Ostrovsky [LO13a] and by Wang et al. [WHC+14]). However, all these

works require round complexity on the order of the running time of the program.

- In another recent line of work [LO13b], [GHL+14], [GLOS15], positive results on round efficient secure computation

for RAM programs have been achieved. However all these constructions are inherently non-black-box in their use

of cryptographic primitives.1 These improvements are obtained by realizing the notion of garbled random-access

1We note that several other cutting-edge results [GKP+13], [GHRW14], [CHJV14], [BGT14], [LP14] have been obtained in non-interactive secure
computation over RAM programs but they all need to make non-black-box use of cryptographic primitives. Additionally some of these construction are
based on strong computational assumptions such as [Reg05], [GGH+13b], [GGH13a]. We skip discussing this further and refer the reader to [GLOS14,
Appendix A] for more details.

2015 IEEE 56th Annual Symposium on Foundations of Computer Science

0272-5428/15 $31.00 © 2015 IEEE

DOI 10.1109/FOCS.2015.22

210

machines (garbled RAMs) [LO13b] as a method to garble RAM programs directly, a RAM analogue of Yao’s garbled

circuits [Yao82].

In particular, we use the notation PD(x) to denote the execution of some RAM program P on input x with initial

memory D. A garbled RAM scheme should provide a mechanism to garble the data D into garbled data D̃, the program

P into garbled program P̃ and the input x into garbled input x̃ such that given D̃, P̃ and x̃ allows for computing PD(x)
and nothing more. Furthermore, up to only poly-logarithmic factors in the running time of the RAM PD(x) and the

size of D, we require that the size of garbled data D̃ is proportional only to the size of data D, the size of the garbled

input x̃ is proportional only to that of x and the size and the evaluation time of the garbled program P̃ is proportional

only to the running time of the RAM PD(x).

Starting with Impagliazzo-Rudich [IR90], [IR89], researchers have been very interested in realizing cryptographic goals

making just black-box use of underlying primitive. It has been the topic of many important recent works in cryptogra-

phy [IKLP06], [PW09], [Wee10], [GLOV12], [GOSV14]. On the other hand, the problem of realizing black-box construction

for various primitive is still open, e.g. multi-statement non-interactive zero-knowledge [BFM88], [FLS99], [GOS06] and

oblivious transfer extension [Bea96].2 From a complexity perspective, black-box constructions are very appealing as they

often lead to conceptually simpler and qualitatively more efficient constructions.3

Motivated by low round complexity and black-box constructions, in this work, we ask if we can achieve the best of both

worlds. In particular:

Can we construct garbled RAM programs with only polylogarithmic overhead making only black-box use of

cryptographic primitives?

A. Our Results

In this paper, we provide the first construction of a fully black-box garbled RAM, i.e. both the construction and the

security reduction make only black-box use of underlying cryptograhpic primitives (one-way functions). The security of our

construction is based on the existence of one-way functions alone. We state this as our main theorem:

Main Theorem (Informal). Assuming only the existence of one-way functions, there exists a secure black-box garbled RAM

scheme, where the size of the garbled database is Õ(|D|), size of the garbled input is Õ(|x|) and the size of the garbled

program and its evaluation time is Õ(T) where T is the running time of program P . Here Õ(·) ignores poly(log T, log |D|, κ)
factors where κ is the security parameter 4. Since garbled RAM implies one-way functions, this can be stated as an

equivalence of primitives.

Just as in previous works on garbled RAM [LO13b], [GHL+14], [GLOS15], our construction allows for maintaining

persistent database across execution of multiple programs on the garbled memory. Also as in [GKP+13], [LO13b], [GHL+14],

[GLOS15], if one is willing to disclose the exact running time of a specific execution, then the running time of a garbled

RAM computation can be made input specific which could be much faster than the worst-case running time.

Secure RAM computation: We also obtain the first one-round secure computation protocol for RAM programs that

makes only black-box use cryptography in the OT-hybrid model. A very unique feature of this construction is that it allows

for asymmetric load in terms of storage costs, i.e., only one party stores the encrypted database. To the best of our knowledge

no previous solutions allowed for an encrypted database based of private information of both parties to be stored on just one

party, and yet allow secure RAM computation on it using black-box methods alone. This makes our constructions particularly

relevant in the context of secure outsourced computation. Our garbled circuit generation algorithms all simply rely on a key

for a pseudo-random function, and therefore can be also outsourced and generated by an external party holding the key in

a manner similar to the work of Ananth et al. [ACG+14].

II. OUR TECHNIQUES

We start by recalling briefly the high level idea behind the previous garbled RAM constructions [LO13b], [GHL+14],

[GLOS15] and its follow up works. This serves as a good starting point in explaining the technical challenges that come

up in realizing grabled RAM making only black-box use of cryptographic primitives.

2Interestingly for oblivious transfer extension we do know black-box construction based on stronger assumptions [IKNP03].
3Additionally, black-box constructions enable implementations agnostic to the implementation of the underlying primitives. This offers greater flexibility

allowing for many optimizations, scalability, and choice of implementation.
4Although it is typically assumed that κ is polynomially related to M , one can redefine the security parameter to be as small as ω(1) log2 M and still

efficiently achieve correctness and security that is all but negligible in M directly.

211

What makes black-box grabled RAM hard: We view the program P , to be garbled, as a sequence of T CPU steps.

Each of these CPU steps is represented as a circuit. Each CPU step reads or writes one bit of the RAM, which stores

some dataset D (that can grow dynamically at run-time though for simplicity we consider a D with M data elements). At

a high level, known garbled RAM construction proceed in two steps. First a garbled RAM scheme is constructed under

the weaker security requirement of unprotected memory access (UMA) in which we do not try to hide the database being

stored or the memory locations being accessed (only the program and input is hidden). Next this weaker security guarantee

is amplified to get full security by using oblivious RAM. Both these steps introduce a non-black-box use of cryptographic

primitives. Besides some technical details, the second step can actually be made black-box just by using statistical oblivious

RAM [Ajt10], [DMN11], [SCSL11], [SvDS+13], [CLP14], though these statistical schemes do not protect the memory

contents which will need to be addressed. Next we describe the challenges we need to overcome in realizing a black-box

construction with UMA security.

At a very high level, known garbled RAM constructions with UMA security construct the garbled memory in the following

way. For each memory location i, containing value bi the value Fs(i, bi) is stored in the “garbled” memory, where s is a

secret key for a pseudorandom function (PRF) F . Let’s consider that a CPU step that wants to read memory location i that

needs to be fed into the next CPU step. Note that both these CPU step circuits will be independently garbled using Yao’s

garbled circuit technique. Let label
0

and label
1

be the garbled input wire labels corresponding to the wire for the read bit

of the second circuit. In order to enable evaluation of the second garbled circuit, we need to reveal exactly one of these

two labels, corresponding to bi, to the evaluator. Note that the first garbled circuit needs to do this without knowing i and

bi at the time of garbling. The idea for enabling the read is for the first garbled circuit to produce a translation gadget: the

first garbled circuit outputs encryptions of labels label
0

and label
1

under keys Fs(i, 0) and Fs(i, 1) respectively. Since the

evaluator holding the garbled memory only has one of the two values Fs(i, 0) or Fs(i, 1) at his disposal, he can only obtain

either label
0

or label
1
. This enables the evaluator to feed the proper bit into the next CPU step and continue the evaluation.

Since the location to be read, i, is generated dynamically at run time the values Fs(i, 0) and Fs(i, 1) must be computed

inside the garbled circuit. This is exactly where non-black-box use of the PRF is made.

More generally, there appears to be a fundamental barrier in this technique. Note that the data in the memory has to be

stored in some encrypted form. In the above case it was stored as the output of a PRF evaluation. Whenever a bit is to be

read from memory, it will need to be internally decrypted to recover what the value being read is, this makes the need for

non-black-box use of cryptography essential. In fact, if we limit ourselves to black-box constructions then we do not know

any garbled RAM solutions that are any better than the trivial solution of converting the RAM program to a circuit.

Our starting idea: dynamic memory: Our starting idea to recover from the above problem is to replace “static” memory

made of various ciphertexts, as has been done in previous works; with a “dynamic” memory consisting of various garbled

circuits. More specifically, in our new solution, we envision reading from “memory” in a new way. Unlike previous work,

we envision reads from memory are achieved by passing the control flow of the program itself to the memory. We explain

how garbled memory is activated: a small number of garbled circuits in the garbled memory are evaluated in sequence.

These garbled circuits are connected in the sense that one garbled circuit will output a valid garbled input for the next

garbled circuit by having both the zero and one labels hardwired within it. Eventually the control reaches back to the main

program and additionally carries the read bit along with. Note that the actual garbled circuits that are fired inside the garbled

memory are dynamically decided based on the location being read. Looking ahead, in our final construction they will also

depend on the previous state of the garbled memory. We describe this later.

Next, we describe a plausible arrangement of garbled circuits in the garbled memory for realizing the above intuition. Let

M be the size of memory. Imagine a tree of garbled circuits where the root garbled circuit has hardcoded in it the input

labels for both its children. Similarly the left child garbled circuit has the input labels of its two children and so on. Finally

the leaf garbled circuits, which are M in number, area such that each contains a bit of the database hardcoded in them. Our

root garbled circuit takes as input two labels label
0

and label
1

and a location to be read. The root garbled circuit based on

the location that needs to be read can activate its left or its right child garbled circuit, ultimately leading to the activation

of a leaf garbled circuit which outputs either label
0

or label
1

based on whether the stored bit in it is 0 or 1. This enables

a black-box way of reading a bit from memory.

However, the key challenge in realizing the above setup is that after only one read a sequence of garbled circuits from the

root to a leaf in the garbled memory have been consumed/destroyed. Hence if we are to continue using the garbled memory

further then we must provide “replacements” for the used garbled circuits. To get better insight into the issues involved,

we start by describing a very natural dynamic replacement solution for this problem which actually fails because of rather

subtle reasons. We believe that this solution highlights the technical issues involved.

Providing “replacements” dynamically: Our first attempted solution for overcoming the above challenge is to provide

“generic” garbled circuits that can replace the specific garbled circuits that are used during a read. As mentioned earlier,

212

during a read, garbled circuits corresponding to a path from the root to a leaf are fired and in the process consumed. It

is exactly these circuits that we need to replace. So corresponding to every read we could provide a sequence of garbled

circuits to exactly replace these consumed garbled circuits. These replacement garbled circuits could be prepared to have

the input labels of their new child already hardcoded in them, though some information needs to be provided at run-time.

Unfortunately this attempted approach has a very subtle bug — relating to a circularity in the parameter sizes. The problem

is that the size of the additional inputs of the “replacements” provides the input labels for the “regular” input wires, but

this information must be passed by the “regular” wires. In other words, if this scheme is to work, then we need to have

the “replacement” garbled circuits be smaller than the garbled circuit that are being consumed which will leads to a blow

up in the size of the first circuit. This appears to be a fundamental problem with this approach. We believe that black-box

techniques cannot be used to fix this problem if only dynamic “replacements” are provided.

Providing “replacements” statically: Our second stab at the problem is to include for each node of the tree not just

one garbled circuit but instead a sequence of garbled circuits. Of course we still need to respect the relationship that each

garbled circuits needs to have the ability to activate its left and right child garbled circuits. Now that we have a sequence

of garbled circuits for every node it is not clear which garbled circuits in its children sequences should a garbled circuit be

connected with. A very simple strategy would be to have T garbled circuits in each sequence corresponding to each node,

where T is the number of reads the garbled memory is designed for. We can connect the ith garbled circuit in each sequence

with the ith garbled circuit in its children sequences. However, this leads to a garbled memory of size T ·M , something

that is much larger than what we want, and defeating the purpose of this approach.

Note that even if we assumed that reads were uniform amongst the leaves, if we have a total of T reads happen at the

root node then with a constant probability we expect a discrepancy of
√
T between the minimum number and maximum

number of reads that go left. This means that we now need a window of size
√
T which is, which is still prohibitively large.

Defeating imbalances — having more circuits and fast-forwarding: Our main idea for dealing with the imbalances

(which causes large window size) is to have more circuits in every sequence for each node. Indeed, these extra circuits serve

two purposes. First, these extra circuits serve as a buffer in case we go beyond expectation. Secondly, when we are too far

behind expectation, these extra circuits will be consumed faster to enforce that we are always within the window of keys

that the parent node has. The key insight is that instead of having a fixed additive factor, the child pointers dynamically

moves beyond the expectation (and enough standard deviations to achieve exopnentially small probability of failure) relative

to the current location. As such, in earlier time steps there is less of a “stretch”, whereas in later time steps there is more

stretch. This resolves the tension between having too many stretch circuits yet still having enough to make sure you do not

run out.

More specifically, our goal is to shrink the key window size down from
√
T to a value that grows only with the security

parameter. We shrink the window size using the following strategy: keep the window always well ahead of number of

garbled circuits that could possibly be consumed (by the Chernoff bound), and provide a method to move into the window

when lagging behind. In order to achieve this we introduce two new ideas, which when combined accomplish this strategy.

First, each circuit has the option to “fast forward” or “burn” by passing on data to its successor circuit in the same node,

specifically the next garbled circuit in the sequence. This “fast forwarding” is enough to ensure that the children garbled

circuits always remain in the appropriate window. The second idea allows a parent garbled circuit to be able to evaluate old

circuits that have fallen out of this window. Note that we only need the parent to be able to evaluate a single old circuit

since whenever the child node is activated it will burn garbled circuits within its own sequence pushing it back into the

window. Thus, we pass from circuit to circuit the keys to the first unused left and right child garbled circuits (and when

consumed, will be replaced by the next key inside the window).

This causes a tension in the parameters: even though the number of circuits is roughly halving each time we go down,

the factor by which we must push it back up by is also growing geometrically. Setting this growth rate to be even constant,

say c > 1, is problematic. We run into difficulties since there will be T 1
2

i
ci circuits per node, and 2i nodes per level, all

the way up to logM — resulting in TM log c circuits, which is polynomial overhead in the size of the dataset. It turns out

that even a very slow growth rate suffices and allows up to get desired efficiency properties. With a careful analysis, it turns

out this is both efficient and will only run out of garbled circuits with negligible probability. The exact details will become

apparent in the construction and proof.

Getting provable security: Although the previous techniques achieve correctness and efficiency, it is not immediately

obvious why it should be secure. Indeed, inputs keys for one garbled circuits are actually hardwired at multiple places, and if

we do not carefully account for all of these locations, we could be running into circularity issues in our solution when using

security of garbled circuits. To accommodate this, we will have a key hardwired only at the first place it was expected to be

hardwired and “passed” dynamically to later circuits. Each garbled circuit will still maintain the same window of keys as

were available to it earlier but now they are dynamically passed by it to its successor (the next garbled circuit in a sequence).

213

Moving forward, new keys are collected and the old keys will be dropped so that the total number of keys being passed

remains small. Using this mechanism we can ensure that a garbled circuit can dynamically “drop” keys that correspond to

a child garbled circuit whose security needs to be relied on in the proof. Based on this, in the hybrid argument, we argue

that whenever a garbled circuit is replaced by a simulated version, we have all instances of its keys have been “dropped.”

A technical issue also arises with the fact at the end some of the unevaluated garbled circuits remain. The problem lies in

the fact that some of their input keys have also been revealed. We handle this issue by providing a generic transformation

that ensures that garbled circuits are indistinguishable from noise as long as input keys for even one wire are not disclosed.

Final touches: In explaining the technical ideas above made several simplifying assumptions. We now provides some

ideas on how to remove these limitations.

• Arbitrary Memory Access. As mentioned above, we can achieve a GRAM solution for programs with arbitrary access

pattern by first compiling it with an ORAM that has uniform access pattern. Programs compiled with statistical ORAM

do not actually have uniform memory access, but rather a leveled uniform access pattern, where the accesses in each

level is uniformly distributed. We deal with this technicality by breaking our memory down into levels where access

in each separate memory is uniform. Alternatively, we can bias the distribution where a leveled ORAM structure is

flattened into memory: for example, we know that the a memory location corresponding to some tree node is accessed

twice as often as its children, thus when we build our circuits we can incorporate and absorb this distribution into our

scheme.

• Replenishing. Since we generate a fixed amount of garbled circuits for the garbled memory, this places a bound on

the number of reads the memory can be used for. We observe that is we sent the number of reads to be equal the

size of memory then this give us enough reads in parallel to with the entire memory can be replenished to allow for

anther size of memory number of reads and so on. In our construction the garbled circuits are generated in a highly

independent fashion and so more garbled circuits can be provided on the fly. Furthermore, this can be seamlessly

amortized (the amortized overhead can be absorbed into the polylog factors) where the garbling algorithm for a T -time

program can generate enough garbled circuits to support T more steps in the future. Finally, this strategy can also be

used to accommodate memory that is dynamically growing.

• Writing. Writing in our construction is achieved in a way very similar to the reading. Reading in our scheme involves

having a leaf garbled circuit pass on the value to the main circuit and simultaneously pass on the stored data value in

it to its successor, so that it could be read again. During writing a garbled circuits passes the value to be written to its

successor instead of the value previously stored.

A. Roadmap

We now lay out a roadmap for the remainder of the paper. In Section III, we give necessary background and definitions

for the RAM model, garbled circuits, and garbled RAM. In Section IV we give the warmup heuristic construction of our

result. We analyze the cost and correctness of the solution in Section V. We extend our construction to a secure one in

Section VI and prove the security in Section VII (with the full proof in Section VIII).

III. BACKGROUND

In this section we fix notation for RAM computation and provide formal definitions for Garbled Circuits and Garbled

RAM Programs. Parts of this section have been taken verbatim from [GHL+14].

A. RAM Model

Notation for RAM Computation: We start by fixing the notation for describing standard RAM computation. For a

program P with memory of size M we denote the initial contents of the memory data by D ∈ {0, 1}M . Additionally, the

program gets a “short” input x ∈ {0, 1}n, which we alternatively think of as the initial state of the program. We use the

notation PD(x) to denote the execution of program P with initial memory contents D and input x. The program can P
read from and and write to various locations in memory D throughout its execution.5

We will also consider the case where several different programs are executed sequentially and the memory persists between

executions. We denote this process as (y1, . . . , y�) = (P1(x1), . . . , P�(x�))
D to indicate that first PD

1 (x1) is executed,

resulting in some memory contents D1 and output y1, then PD1

2 (x2) is executed resulting in some memory contents D2

and output y2 etc. As an example, imagine that D is a huge database and the programs Pi are database queries that can

read and possibly write to the database and are parameterized by some values xi.

5In general, the distinction between what to include in the program P , the memory data D and the short input x can be somewhat arbitrary. However
as motivated by our applications we will typically be interested in a setting where that data D is large while the size of the program |P | and input length
n is small.

214

CPU-Step Circuit: Consider a RAM program who execution involves at most T CPU steps. We represent a RAM

program P via a sequence of T small CPU-Step Circuit where each of them executes a single CPU step. In this work we

will denote one CPU step by:

CP
CPU(state, data) = (state′,R/W, L, z)

This circuit takes as input the current CPU state state and a block “data”. Looking ahead this block will be read from the

memory location that was requested for a memory location requested for in the previous CPU step. The CPU step outputs

an updated state state′, a read or write bit R/W, the next location to read/write L ∈ [M], and a block z to write into the

location (z = ⊥ when reading). The sequence of locations and read/write values collectively form what is known as the

access pattern, namely MemAccess = {(Lτ ,R/W
τ
, zτ , dataτ) : τ = 1, . . . , t}, and we can consider the weak access pattern

MemAccess2 = {Lτ : τ = 1, . . . , t} of just the memory locations accessed.

Note that in the description above without loss of generality we have made some simplifying assumptions. First, we

assume that the output zwrite is written into the same location zread was read from. Note that this is sufficient to both read

from and write to arbitrary memory locations. Secondly we note that we assume that each CPU-step circuit always reads

from and write some location in memory. This is easy to implement via a dummy read and write step. Finally, we assume

that the instructions of the program itself is hardwired into the CPU-step circuits, and the program can first load itself into

memory before execution. In cases where the size of the program vastly differs from its running time, one can suitably

partition the program into two pieces.

Representing RAM computation by CPU-Step Circuits: The computation PD(x) starts with the initial state set as

state0 = x and initial read location L0 = 0 as a dummy read operation. In each step τ ∈ {0, . . . T − 1}, the computation

proceeds by first reading memory location Lτ , that is by setting bread,τ := D[Lτ] if τ ∈ {1, . . . T − 1} and as 0 if τ = 0.

Next it executes the CPU-Step Circuit CP
CPU(state

τ , bread,τ) = (stateτ+1, Lτ+1, bwrite,τ+1). Finally we write to the location

Lτ by setting D[Lτ] := bwrite,τ+1. If τ = T − 1 then we set state to be the output of the program P and ignore the value

Lτ+1. Note here that we have without loss of generality assumed that in one step the CPU-Step the same location in memory

is read from and written to. This has been done for the sake of simplifying exposition.

B. Garbled Circuits

Garbled circuits was first constructed by Yao [Yao82] (see e.g. Lindell and Pinkas [LP09] and Bellare et al. [BHR12]

for a detailed proof and further discussion). A circuit garbling scheme is a tuple of PPT algorithms (GCircuit,Eval). Very

roughly GCircuit is the circuit garbling procedure and Eval the corresponding evaluation procedure. Looking ahead, each

individual wire w of the circuit will be associated with two labels, namely labw0 , lab
w
1 . Finally, since one can apply a generic

transformation (see, e.g. [AIK10]) to blind the output, we allow output wires to also have arbitrary labels associated with

them. Indeed, we can classify the output values into two categories — plain outputs and labeled outputs. The difference

in the two categories stems from how they will be treated when garbled during garbling and evaluation. The plain output

values do not require labels provided for them and evaluate to cleartext values. On the other hand labeled output values will

require that additional output labels be provided to GCircuit at the time of garbling, and Eval will only return these output

labels and not the underlying cleartext. We also define a well-formedness test for labels which we call Test.

•

(

C̃
)

← GCircuit
(
1κ, C, {(w, b, labwb)}w∈inp(C),b∈{0,1}

)
: GCircuit takes as input a security parameter κ, a circuit C,

and a set of labels labwb for all the input wires w ∈ inp(C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃.

• It can be efficiently tested if a set of labels is meant for a garbled circuit.

• y = Eval(C̃, {(w, labwxw
)}w∈inp(C)): Given a garbled circuit C̃ and a garbled input represented as a sequence of input

labels {(w, labwxw
)}w∈inp(C), Eval outputs an output y in the clear.

Correctness: For correctness, we require that for any circuit C and input x ∈ {0, 1}n (here n is the input length to C)

we have that that:

Pr
[

C(x) = Eval(C̃, {(w, labwxw
)}w∈inp(C))

]

= 1

where
(

C̃
)

← GCircuit
(
1κ, C, {(w, b, labwb)}w∈inp(C),b∈{0,1}

)
.

Security: For security, we require that there is a PPT simulator CircSim such that for any C, x, and uniformly random

labels
(
{(w, b, labwb)}w∈inp(C),b∈{0,1}

)
, we have that:

(

C̃, {(w, labwxw
)}w∈inp(C)

)
comp≈ CircSim (1κ, C, C(x))

where
(

C̃
)

← GCircuit
(
1κ, C, {(w, labwb)}w∈out(C),b∈{0,1}

)
and y = C(x).

215

C. Garbled RAM

Next we consider an extension of garbled circuits to the setting of RAM programs. In this setting the memory data D is

garbled once and then many different garbled programs can be executed sequentially with the memory changes persisting

from one execution to the next. We define both full security and a weaker variant known as Unprotected Memory Access

2 (UMA2) (similar to UMA security that appeared in [GHL+14]), and we show how UMA2-secure Garbled RAM can be

compiled with statistical Oblivious RAM to achieve full security.

Definition III.1. A (UMA2) secure single-program garbled RAM scheme consists of four procedures (GData, GProg,
GInput, GEval) with the following syntax:

• (D̃, s) ← GData(1κ, D): Given a security parameter 1κ and memory D ∈ {0, 1}M as input GData outputs the garbled

memory D̃.

• (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m) : Takes the description of a RAM program P with memory-size M as input.

It also requires a key s and current time m. It then outputs a garbled program P̃ and an input-garbling-key sin.

• x̃ ← GInput(1κ, x, sin): Takes as input x ∈ {0, 1}n and and an input-garbling-key sin, a garbled “tree root” key s
and outputs a garbled-input x̃.

• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and output a value y. We

model GEval itself as a RAM program that can read and write to arbitrary locations of its memory initially containing

D̃.

Efficiency: We require the run-time of GProg and GEval to be t · poly(logM, log T, κ), which also serves as the bound

on the size of the garbled program P̃ . Moreover, we require that the run-time of GData should be M ·poly(logM, log T, κ),
which also serves as an upper bound on the size of D̃. Finally the running time of GInput is required to be n · poly(κ).

Correctness: For correctness, we require that for any program P , initial memory data D ∈ {0, 1}M and input x we

have that:

Pr[GEvalD̃(P̃ , x̃) = PD(x)] = 1

where (D̃, s) ← GData(1κ, D), (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m), x̃ ← GInput(1κ, x, sin).
Security with Unprotected Memory Access (Full vs UMA2): For full or UMA2-security, we require that there exists

a PPT simulator Sim such that for any program P , initial memory data D ∈ {0, 1}M and input x, which induces access

pattern MemAccess we have that:

(D̃, P̃ , x̃)
comp≈ Sim(1κ, 1M , 1t, y,MemAccess)

where (D̃, s) ← GData(1κ, D), (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m) and x̃ ← GInput(1κ, x, sin), and y = PD(x).
Note that unlike UMA security, the simulator does not have access to D. For full security, the simulator Sim does not get

MemAccess as input.

IV. THE CONSTRUCTION

In this section we describe our construction for garbled RAM formally, namely the procedures (GData, GProg, GInput,
GEval). In order to make the exposition simpler, in this section we will describe our construction making four simplifying

assumptions, which will be all removed in our final construction.

1) UMA2-security: Here we will restrict ourselves to achieving UMA2-security alone Definition III.1 (UMA2). We note

that this construction can then be amplified to get full security satisfying Definition III.1 (full) using a straightforward

lemma (see the full version [GLO15]). This is essentially the transformation from previous works [LO13b], [GHL+14],

[GLOS15] except that we need to restrict ourselves to using statistical ORAMs [DMN11], [SCSL11], [SvDS+13].

Note that this transformation is information theoretic and preserves the black-box nature of our construction.

2) Uniform memory accesses: We assume that the distribution of memory accesses of the programs being garbled are

uniform. In the full version [GLO15], we also describe how this restriction can be removed and construction achieved

even given any arbitrary probability distribution on memory reads. Essentially, we first compile our program with an

Oblivious RAM that satisfies the property that the simulated access are uniformly distributed.

3) First Step: Heuristic proof: The construction described in this section is “heuristic” in the sense that we do not know

how to prove its security. However we do not know of any concrete attacks against it. At a high level it suffers from

a sort of a circular security problem. However this issue is rather easy to solve in our context. We describe the issue

and the fix in Section VI to obtain a full security proof.

216

4) Bounded reads: We will describe our construction assuming that the total number of memory accesses (both read and

write) made to the garbled memory is bounded by M , the size of the memory. In Section VIII, we explain how this

restriction can be removed. In particular we will describe a memory replenishing mechanism for refilling the garbled

memory as it used. This replenishing will involve some additional communication for each garbled program, while

ensuring that the overhead of this replenishing information sent with each garbled program is small.

Notation: We use the notation [n] to denote the set {0, . . . , n−1}. For any string L, we use Li to denote the ith bit of

L where i ∈ [|x|] with the 0th bit being the highest order bit. We let L0...j−1 denote the j high order bits of L. We will be

using multiple garbled circuits and will need notation to represent bundles of input labels for garbled circuits succinctly. In

particular, if lab = {labi,b}i∈|x|,b∈{0,1} describes the labels for input wires of a garbled circuit, then we let labx denote the

labels corresponding to setting the input to x, i.e. the subset of labels {labi,xi}i∈|x|. Similarly we will sometimes consider a

collection of garbled circuits and denote the collection of labels for input wires of these garbled circuits with lab. Let i be

an index of a garbled circuit in this collection then we let lab[i]x denote the labels corresponding to setting the input to x of

the ith garbled circuit. Looking ahead, throughout our construction the inputs to the circuits we consider with be partitioned

in into two parts, the red and the blue. We will use the colors red and blue to stress whether an input label corresponds to a

red input wire or a blue input wire. We extend this coloring to collections of labels of the same color. We believe that this

makes it much easier to read our paper and recommend reading it on a coloured screen or a colored printout.

A. Data Garbling: (D̃, s) ← GData(1κ, D)

We start by providing an informal description of the data garbling procedure, which turns out to be the most involved part

of the construction. The formal description of GData is provided in Figure 4. Our garbled memory consists of two parts.

1) Garbled Circuits: Intuitively our garbled memory will be organized as a binary tree and each node of this tree will

correspond to a sequence of garbled circuits. For any garbled circuit its successor is defined as the next garbled circuit

in the sequence of garbled circuits corresponding to that node. Similarly we define predecessor as the previous garbled

circuit in the sequence. For a garbled circuit all the garbled circuits in its parent node are referred to as its parents.

Analogously we define children. These garbled circuits are obtained by fresh garblings of two separate circuits, one

corresponding to the leaf nodes and the other corresponding to non-leaf nodes.

For each of these garbled circuits, we will divide its input wires (and corresponding keys/lables) into two categories,

the red input wires and the blue input wires.

Each garbled circuit will contain all input keys for its successor. Specifically this includes both the red and the blue

input keys of its successor. Additionally each garbled circuit will contain a subset of input wires for a subset of its

left and right children. Specifically, it will contain the blue input keys for a consecutive κ garbled circuits among its

left children and a consecutive κ garbled circuits among its right children.

2) Tabled garbled Information: Additionally for each node in the tree as described above, the garbled memory consists

of a table of information Tab(i, j), where (i, j) denotes a node in the tree.

Looking ahead, as the memory is read from or written to these garbled circuits that constitute the garbled memory will

actually be used. Furthermore if a garbled circuits corresponding to a node is being consumed then its predecessor

must have previously already been consumed. The tabulated information will be the red input keys for the first unused

garbled circuit for each node.

Circuits needed: Next we describe the two circuits, garblings of which will be used to generate the garbled memory.

The circuits are described formally in Figures 2 and 3. The non-leaf node circuit takes as input some recorded info rec and

a query q. Garbled labels for rec will be red and denoted as rKey and garbled labels for q will be blue and denoted as

qKey. Although every single circuit will have its own unique rKey and qKey, when we refer to these in the context of some

particular circuit, it will always refer to the keys of its successor and these values will be hard-coded in it. Additionally the

circuit has hardcoded inside it its level i in the tree, its own position k within the sequence of garbled circuits at that node,

garbled labels rKey, qKey for its successor, and a collection of labels for the left and right child garbled circuits which we

denote as tKey. Each tKey is a vector of exactly 2κ qKeys, the first κ correspond to qKeys for a contiguous block of κ of

left child circuits (exactly which ones, we will describe later), and the last κ respectively correspond to labels for circuits

in the right child.

The inputs are straightforward, rec contains indices to the first unused left and right child circuits as well as their qKeys.

This allows us to either go left or right, although we will need to update the index and key as soon as we consume it, and

we will replace it with something inside of tKey. The query q is simply a CPU query with one additional “goto” field goto
that informs where the first unused circuit in a node should be at to in order to fall inside the window of its parents tKey. If

the current circuit k < goto− 1, we “burn” the circuit and pass our inputs onto our successor until it is precisely goto− 1,

217

ERROR

outrKey

outqKey

rec

q Cnode

[i, k, tKey, rKey, qKey]

ERROR

outdKey

outqKey or cpuDKey

data

q C leaf

[i, k, dKey, qKey]

Figure 1. Memory circuits.

so that the first unused circuit is now indeed located at goto. In summary, we write Cnode[i, k, tKey, rKey, qKey](rec, q) for

non-leaf circuits.

Cnode[i, k, tKey, rKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)

Hardcoded parameters: [i, k, tKey, rKey, qKey]
Input: (rec = (lidx, ridx, oldLKey, oldRKey), q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
. Set lidx′ := lidx and ridx′ := ridx. Set oldLKey′ := oldLKey and oldRKey′ := oldRKey.

We now have three cases:

1) If k < p− 1 then we output (outrKey, outqKey) := (rKeyrec′ , qKeyq), where rec′ := (lidx′, ridx′, oldLKey′, oldRKey′).
2) If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3) If p− 1 ≤ k < p+ κ then:

a) If Li = 0 then,

i) If lidx < p′ then set lidx′ := p′, goto′ := p′ and oldLKey′ := tKey[0]. Else set lidx′ := lidx+ 1, goto′ := lidx′

and if lidx′ < p′+κ then set oldLKey′ := tKey[lidx′−p′] else abort with OVERCONSUMPTION-ERROR-II.

ii) Set outqKey := oldLKeyq′ , where q′ := q but with goto′ replacing goto.

else

i) If ridx < p′ then set ridx′ := p′, goto′ := p′ and oldRKey′ := tKey[κ]. Else set ridx′ := ridx +
1, goto′ := ridx′ and if ridx′ < p′ + κ then set oldRKey′ := tKey[κ + ridx′ − p′] else abort with

OVERCONSUMPTION-ERROR-II.

ii) Set outqKey := oldRKeyq′ , where q′ := q but with goto′ replacing goto.

b) Set outrKey := rKeyrec′ where rec′ := (lidx′, ridx′, oldLKey′, oldRKey′) and output (outrKey, outqKey).

Figure 2. Formal description of the nonleaf Memory Circuit.

Similarly, leaf circuits takes as input some memory data data and a query q. Here, the red key is dKey which corresponds

to the garbled labels of data. A leaf circuit will have hardcoded inside it the current level i = d in the tree, its own position

k within the sequence of garbled circuits at that leaf, garbled labels dKey, qKey for its successor. Since a leaf node has no

further children, there is no need for tKey. We write Cleaf [i, k, dKey, qKey](data, q) for these circuits.

Actual data garbing: At a high level, we generate our garbled memory by garbling multiple instances of circuits

described in Figures 2 and 3. The formal construction is provided in Figure 4. As mentioned earlier, these garbled circuits

actually correspond to the nodes of a tree. Specifically, if the size of the database is M = 2d, then the root node will contain

roughly Mκ circuits, each nodes in subsequent level will contain roughly half that amount. More specifically, any node

at level i contains at most Ki =
⌊(

1
2 + ε

)i
(M + iκ)

⌋

+ κ garbled circuits. In total, the garbled memory will consist of
∑d

i=0 (1 + 2ε)
i
(M + iκ)+κ garbled circuits. Looking ahead ε will be set to 1

d so that the this number is linear in M +dκ.

218

Cleaf [i, k, dKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)

Hardcoded parameters: [i, k, dKey, qKey]
Input: (data, q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
. We now have three cases:

1) If k < p− 1 then we output (outdKey, outqKey) := (dKeydata, qKeyq).
2) If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3) If p− 1 ≤ k < p+ κ then:

a) If R/W = read then output (dKeydata, cpuDKeydata), else if R/W = write then output (dKeyz, cpuDKeyz).

Figure 3. Formal description of the leaf Memory Circuit.

The algorithm GData(1κ, D) proceeds as follows. Without loss of generality we assume that M = 2d (where M = |D|) where

d is a positive integer. We calculate ε = 1
logM . We set K0 = M , and for each i ∈ [d+1] and set Ki =

⌊(
1
2 + ε

)
Ki−1

⌋
+κ.

1) Let s ← {0, 1}κ.

2) Any dKeyd,j,k needed in the computation below is obtained as Fs(data||d||j||k). Similarly for any i, j, k, rKeyi,j,k :=
Fs(rec||i||j||k) and qKeyi,j,k := Fs(query||i||j||k). Finally,

tKeyi,j,k :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

{

qKeyi+1,2j,	(1

2
+ε)k
+l

}

l∈[κ]
︸ ︷︷ ︸

left

,
{

qKeyi+1,2j+1,	(1

2
+ε)k
+l

}

l∈[κ]
︸ ︷︷ ︸

right

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

.

3) For all j ∈ [2d], k ∈ [Kd],
C̃d,j,k ← GCircuit

(
1κ,Cleaf

[
d, k, dKeyd,j,k+1, qKeyd,j,k+1

]
, dKeyd,j,k, qKeyd,j,k

)
.

4) For all i ∈ [d], j ∈ [2i], k ∈ [Ki],
C̃i,j,k ← GCircuit

(
1κ,Cnode

[
i, k, tKeyi,j,k, rKeyi,j,k+1, qKeyi,j,k+1

]
, rKeyi,j,k, qKeyi,j,k

)
.

5) For all j ∈ [2d], set Tab(d, j) = dKey
d,j,0
D[j] .

6) For all i ∈ [d], j ∈ [2i], set Tab(i, j) := rKey
i,j,0
reci,j,0

, where reci,j,0 := (0, 0, qKeyi+1,2j,0, qKeyi+1,2j+1,0)

7) Output D̃ :=

({

C̃i,j,k
}

i∈[d+1],j∈[2i],k∈[Ki]
, {Tab(i, j)}i∈[d+1],j∈[2i]

)

and s.

Figure 4. Formal description of GData.

In order to simplify generation of garbled circuits, we generate all the labels needed for generation of these garbled circuits

as the outputs of a PRF on appropriate input values under a fixed seed s. Looking ahead, this will be crucial in extending

our construction to allow for generating memory replenishing information. This is elaborated upon in Section VIII.

B. Program Garbling: (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m)

We start by defining a sub-circuit that will be needed in describing the program garbling in Figure 5. This circuit basically

performs one step of the CPU and provides input lables for a root garbled circuit in the garbled memory. The formal

description of program garbling itself in provided in Figure 6. The garbled program is obtained by garbling multiple CPU

step circuits where very rough each circuit provides the input labels for the next CPU step and for the root circuit of the

garbled memory, which then enables reading data from memory.

Cstep[t, rootqKey, cpuSKey, cpuDKey]
Hardcoded parameters: [t, rootqKey, cpuSKey, cpuDKey]
Input: (state, data).

Compute (state′,R/W, L, z) := CP
CPU(state, data). Set q := (goto = t+1,R/W, L, z, cpuDKey) and output rootqKeyq and

cpuSKeystate′ , unless we are halting in which case only output state′ in the clear.

Figure 5. Formal description of the step circuit.

219

The GProg(1κ, 1logM , 1t, P, s,m) procedure proceeds as follows.

1) Any cpuSKeyτ needed in the computation below is obtained as Fs(CPUstate||τ), and any cpuDKeyτ is obtained

as Fs(CPUdata||τ).
2) For τ = m, . . . ,m+ t− 1 do:

a) Set qKey0,0,τ := Fs(query||0||0||τ).
b) C̃τ ← GCircuit

(
1κ, Cstep

[
τ, qKey0,0,τ , cpuSKeyτ+1, cpuDKeyτ+1

]
, cpuSKeyτ , cpuDKeyτ

)

3) Output P̃ :=
(

m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey
m
0

)

, sin = cpuSKeym

Figure 6. Formal description of GProg.

C. Input Garbling: x̃ ← GInput(1κ, x, sin)

Informally, the GInput algorithm uses x as selection bits for the labels provided by sin and outputs x̃, which is just the

selected labels. A formal description of GProg is provided in Figure 7.

The algorithm GInput(1κ, x, sin) proceeds as follows.

1) Parse sin as cpuSKey and output x̃ := cpuSKeyx.

Figure 7. Formal description of GInput.

D. Garbled Evaluation: y ← GEvalD̃(P̃ , x̃)

The GEval procedure gets as input the garbled program P̃ =
(

m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey
)

, the garbled input

x̃ = cpuSKey and random access into the garbled database D̃ = ({C̃i,j,k}i∈[d+1],j∈[2i],k∈[Ki],
{Tab(i, j)}i∈[d+1],j∈[2i]). Intuitively the GEval is very simple. It proceeds by executing a subset of the garbled circuits from

the garbled program and the garbled memory in a specific order which is decided dynamically based on the computation.

The labels needed to evaluate the first garbled circuit are provided as part of the garbled input and each evaluation of a

garbled circuit reveals the labels for at most two distinct circuits. Among these two circuits, only one is such that all its

input labels have been provided, and this circuit is executed next. The unused input labels are stored in memory table Tab

to be used at a later point. Next we provide the formal description of GEval in Figure 8.

The algorithm GEvalD̃(P̃ , x̃) proceeds as follows.

1) Parse P̃ as
(

m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey
)

, x̃ as cpuSKey and

D̃ as

({

C̃i,j,k
}

i∈[d+1],j∈[2i],k∈[Ki]
, {Tab(i, j)}i∈[d+1],j∈[2i]

)

.

2) For τ ∈ {m, . . . ,m+ t− 1} do:

a) Evaluate (cpuSKey, qKey) := Eval(C̃τ , (cpuSKey, cpuDKey)). If an output y is produced by Eval instead, then

output y and halt.

b) Set i = 0, j = 0, k = τ .

c) Evaluate outputKey := Eval(C̃i,j,k, (Tab(i, j), qKey)).

i) If outputKey is parsed as (rKey, qKeyi
′,j′,k′

) for some i′, j′, k′, then set Tab(i, j) := rKey, qKey :=
qKeyi

′,j′,k′

, (i, j, k) = (i′, j′, k′) and go to Step 2c.

ii) Otherwise, set (dKey, cpuDKey) := outputKey,and Tab(i, j) := dKey and τ := τ + 1.

Figure 8. Formal description of GEval.

V. COST AND CORRECTNESS ANALYSIS

A. Overall Cost

Before we analyze the cost of the main algorithms, we first calculate the sizes of all the constituent variables and circuits.

The database D has size |D| = M elements, and each data element is of |data| = B bits. Garbled labels for each bit of

an input wire are λ bits long. The complete garbled labels for n input bits takes up 2λn bits. Furthermore, the current time

step m or τ we upper bound by the total combined running time T . Of course, B, λ, T are all poly(κ), and for the two

former values we simply absorb them into the poly(κ) term, whereas we keep T as a separate parameter for later use.

220

From this, we can compute |cpuSKey| = 2λ|state| and |cpuDKey| = 2λB. A query q has size |goto| + |R/W| + |L| +
|z| + |cpuDKey| ≤ log T + 1 + logM + B + 2λB, and |qKey| = 2λ|q|. Since dKey are just the labels for memory data,

|dKey| = 2λB. Next, we compute the size of rec. Observe that oldLKey and oldRKey are simply qKeys, so we have

|rec| = |lidx| + |ridx| + |oldLKey| + |oldRKey| ≤ 2(log T + |qKey|). Finally, tKey consist of 2κ qKeys and therefore have

size |tKey| = 2κ|qKey|.
Now we calcluate |Cnode|. Observe that the calculations within the circuit are primarily comparisons, and overall is at most

polynomial in the size of the input and hardwired values. Thus |Cnode| = poly(|i|+|k|+|tKey|+|rKey|+|qKey|+|rec|+|q|) =
poly(logM, log T, κ) and so is its garbled version.

Next, we calcluate |C leaf|. We have |Cleaf [i, k, dKey, qKey](data, q)| = poly(|i|+ |k|+ |dKey|+ |qKey|+ |data|+ |q|) =
poly(logM, log T, κ) and so is its garbled version.

Finally, we calcluate |Cstep|. We assume that the plain CPU has size poly(logM, log T, κ). Since the step circuit simply

computes the CPU circuit and does a few selections, we have: |Cstep| = poly(log T + |qKey|+ |cpuSKey|+ |cpuDKey|+
|state|+ |data|+ |CPU |) = poly(logM, log T, κ).

We can now calculate the cost of the individual algorithms.

1) Cost of GData: The algorithm GData(1κ, D) first computes O(M) dKey, rKey, qKey values, which only takes M ·
poly(logM, log T, κ) steps. For each node at level i < d, it computes Ki garbled Cnode circuits and tabulates an an rKey

for each of the 2i nodes. At level i = d, it computes Kd garbled C leaf circuits and tabulates M = 2d dKeys. The output is

of size equal to all the garbled circuits plus the size of the tabulated values plus one PRF key. Let c = e2 and let ε = 1
logM .

First, we show how to bound bound Ki ≤
(
1
2 + ε

)i
M +

∑i−1
j=0

(
1
2 + ε

)j
κ. This can be shown by induction: K0 = M ,

and by induction, Ki+1 =
⌊(

1
2 + ε

)
Ki

⌋
+ κ ≤

(
1
2 + ε

)
Ki + κ ≤

(
1
2 + ε

)
·
[(

1
2 + ε

)i
M +

∑i−1
j=0

(
1
2 + ε

)j
κ
]

+ κ ≤
(
1
2 + ε

)i+1
M +

∑i+1−1
j=0

(
1
2 + ε

)j
κ.

This bound can then be simplified to Ki ≤
(
1
2 + ε

)i
(M + iκ).

Thus, overall, we calculate the number of garblings of Cnode as

d−1∑

i=0

2i ·Ki ≤
d−1∑

i=0

2i ·
(
1

2
+ ε

)i

(M + iκ) ≤
d−1∑

i=0

(1 + 2ε)
i
(M + dκ) ≤ (1 + 2ε)

d − 1

(1 + 2ε)− 1
(M + dκ) ≤ e2εd − 1

2ε
(M + dκ)

Since ε = 1/d, and garbling such circuits takes poly(logM, log T, κ) time, this overall takes M ·poly(logM, log T, κ) time

and space. At the leaf level, it performs at most 2d·(12+ε)d(M+dκ) garblings of C leaf. Again, this takes poly(logM, log T, κ)·
M time and space. Finally, there are O(M) of rKey and dKey values stored in Tab(i, j), which is again poly(logM, log T, κ)·
M .

2) Cost of GProg : The algorithm GProg(1κ, 1logM , 1t, P, s,m) computes t cpuSKeys,cpuDKeys, and qKeys. It also gar-

bles t Cstep circuits and outputs them, along with a single cpuSKey. Since each individual operation is poly(logM, log T, κ),
the overall time and space cost is poly(logM, log T, κ) · t.

3) Cost of GInput : The algorithm GInput(1κ, x, sin) selects labels of the state key based on the state as input. As such,

the time and space cost is |cpuSKey|.
4) Cost of GEval : We first assume that an error does not occur in GEval. As we shall see in Section V-B that this

occurs with all but negligible probability. We analyze how many circuits were consumed after T steps in order to obtain the

amortized cost of GEval. We let ki denote the maximum number of circuits consumed in some node at level i. At the root,

exactly T circuits were consumed so k0 = T , and in order for level i to not overflow, it must not have consumed more than
⌊(

1
2 + ε

)
ki−1

⌋
+κ circuits. By the same analysis of the bound of Ki, it must be the case that ki ≤

(
1
2 + ε

)i
(T + iκ). Then

no more than
∑d

i=0 2
iki circuits could have been consumed, each of which has evaluation cost at most poly(logM, log T, κ).

It turns out this bound is slightly insufficient, and this is due to the case when T < M , the 2i term is an overestimate.

Indeed, if there are only T accesses, then there can be at most T nodes that were ever touched at a level. Using min(2i, T)
as the bound on the number of nodes ever touched per level suffices:

d∑

i=0

min(2i, T)ki ≤
d∑

i=0

min(2i, T)

(
1

2
+ ε

)i

(T + iκ) ≤ T

(
d∑

i=0

min(2i, T)

(
1

2
+ ε

)i

+
min(2i, T)iκ

T

)

≤ T

(
d∑

i=0

(2i)(

(
1

2
+ ε

)i

) +
(T)iκ

T

)

≤ T
(
d((1 + 2ε)d + dκ)

)
≤ T

(
d(e2 + dκ)

)
.

When accounting for the cost of each of these circuits being evaluated, this means that the amortized cost is T ·
poly(logM, log T, κ) overall.

221

B. Correctness

Observe that as long as the memory data is correctly stored and passed on to the CPU step circuits, the scheme is correct.

The only way this can fail to happen is if a query q fails to make it from the root to the leaf. In order to demonstrate this, we

need to analyze two things. We must show that a parent ciruit will always output the proper qKey for the first unused child

circuit, and we also must show that the errors OVERCONSUMPTION-ERROR-I and OVERCONSUMPTION-ERROR-II do

not occur except with a negligible probability.

Lemma V.1. Within Cnode, lidx always points to the first unused left child circuit which has qKey equal to oldLKey, and

ridx always opint to the first unused right child circuit which has qKey equal to oldRKey.

Proof: WLOG we show this for the left child. We prove this by induction on the current CPU step. In the base case,

this is true due to the way GData set up the keys. Now suppose we are consuming some parent circuit and it was true

for the previous circuit, i.e. lidx and oldLKey correctly point to the first unused left child circuit. Then it remains to show

that lidx′ points to what will be the first unused left child circuit during the next CPU step, and that the updated old key

oldLKey′ points to it. Recall p′ = 	(12 + ε)k
, and by definition of GData, this is precisely the child circuit that tKey[0]
is the qKey of. If lidx < p′ then the child circuit will burn until the goto′ circuit, which is exactly what lidx′ is set to be,

and oldLKey′ is set to tKey[0] which is precisely what lidx′ = goto′ is set to. On the other hand, if lidx > goto′ then by

definition, goto′ = lidx′ = lidx+1 and oldLKey′ holds the key for precisely the next circuit past lidx. But we know that the

child node will consume exactly one circuit since goto′ is precisely one past lidx which by induction is the current child

index, so lidx′ will point to the first unused child circuit and oldLKey′ is its key.

Lemma V.2. The errors OVERCONSUMPTION-ERROR-I and OVERCONSUMPTION-ERROR-II do not occur except with

a negligible probability.

Proof: Again, WLOG we show this for the left child. Note that an error can never occur at the root, and that the error

OVERCONSUMPTION-ERROR-I would occur if and only if an OVERCONSUMPTION-ERROR-II would have occured

just before it. Thus, we bound the probability that an OVERCONSUMPTION-ERROR-I could occur. Suppose an error first

occurs at some node (i, j) at the m1-th circuit in this node. Then this means that the child lidx′ has become greater than

p′ + κ = 	(12 + ε)m1
+ κ. Since each time the left child is visited, many child circuits may be consumed due to burning,

it might be difficult to figure out exactly how many child circuits were consumed if m1 parent circuits were consumed.

However, we can define a synchronize event, which is namely that the parent is on circuit k and the child is on circuit

	(12 + ε)k
, or more precisely, when goto′ = 	(12 + ε)k
. We let m0 < m1 be the latest point for the parent for which this

synchronize occured. We know that such an m0 exists, since time m0 = 0 is a valid solution.

Because there have been no more burns since that time, each time the left child was visited, exactly one circuit was also

consumed. At m0, exactly 	(12 + ε)m0
 child circuits were consumed, and at m1, more than 	(12 + ε)m1
+κ child circuits

would have been consumed (if we did not break on error). During this time, m1−m0 parent circuits were consumed, so the

parent node was visited at most m1−m0 times (it could be less due to burning), and we expect the child node to be visited

µ = m1−m0

2 times. For t = 0, . . . ,m1 −m0, let Xt denote the 0/1 random variable indicating that on time step m0 + t the

left node was visited, and let X =
∑m1−m0

t=0 Xt. We calculate the probability that Pr[X > 	(12 + ε)m1
+κ−	(12 + ε)m0
]
which is the probability that this error would have occurred. This becomes Pr[X >

((
1
2 + ε

)
(m1 −m0)

)
+ κ − 1]. Note

that we can trivially condition on the case where m1 −m0 > κ, because otherwise X < κ with probability 1, so we can

conclude µ > κ/2.

Substituting δ = 2ε+ κ−1
µ , this becomes Pr[X > (1+ δ)µ]. Then by the Chernoff bound for δ > 0, Pr[X > (1+ δ)µ] ≤

exp((δ − (1 + δ) ln(1 + δ))µ).
Then reorganizing terms and using a second-order log approximation:

Pr[X > (1 + δ)µ] ≤ exp

[(

δ + (1 + δ) log

(

1− δ

1 + δ

))

µ

]

≤ exp

[(

δ + (1 + δ)

(

− δ

1 + δ
− δ2

(1 + δ)2

))

µ

]

≤ exp

[

− δ2µ

1 + δ

]

≤ exp

[

−δµ

(
δ

1 + δ

)]

≤ exp

[

−(2εµ+ κ− 1)

(
2ε+ (κ− 1)/µ

1 + 2ε+ (κ− 1)/µ

)]

≤ exp

[

−(2εµ+ κ− 1)

(
2ε

1 + 2ε

)]

≤ exp [−(2εµ+ κ− 1) (ε)] ≤ exp
[
−(2ε2µ+ ε(κ− 1))

]

Since ε = 1
logM , this is negligible.

222

VI. SECURE MAIN CONSTRUCTION

We first provide the intuition of how we would like the proof would go through. Our goal is to construct a simulator Sim

such that only given the access pattern and output (and not the database contents) it can simulate the view of the evaluator.

The first observation is that the only point of the PRF F was to allow GProg to efficiently be able to compute the root

keys and to replenish new circuits in nodes without having to remember all the existing labels. Since Sim can run in time

propotional to the size of the database, it can simply remember all these values internally, and therefore the first step is to

replace F with a truly random table that Sim keeps track of.

Next, we must simulate the garbled circuits one at a time. In order to do so, we order the circuits by the order in

which they were evaluated, and then define a series of hybrids where hybrid i has the first i garbled circuits simulated.

The hybrids are constructed so that the circuits are simulated in reverse order, such that the i-th circuit is simulated first,

and so on, until the first circuit C̃0 is simulated. At first glance, this appears to work, but there is actually a subtle issue.

Each qKey of a circuit in a node circuit resides in several locations: the predecessor circuit in the same node, and inside

several tKey, oldLKey, oldRKey of circuits in its parent node. Indeed, if a full qKey appears anywhere (whether as a passed

or hardwired value) in the current hybrid, then this causes a “circularity” issue. In order to overcome this barrier, we pass

tKey from circuit to circuit instead of hardwiring them as seen in Figures 9 and 10.

This way, we can control which keys are present in a circuit. In particular, we drop consumed qKeys so that no future

unevaluated circuit has them. However, we still need to hardwire new qKeys, but we only do so as needed as part of two

new hardwired variables newLtKey and newRtKey. Then, whenever a circuit outputs some qKey for a child circuit, it also

drops all qKeys inside tKey that are older than or equal to qKey. Note that we still maintain the exact same tKey size of

2κ keys, so this passing method will never accumulate too many keys. We formalize this construction by modifying how

GData and Cnode work in Figures 9 and 10, and the remainder of the construction is unchanged. It is straightforward to see

that this neither affects correctness (only keys corresponding to consumed or soon-to-be-burned circuits will be dropped) nor

asymptotic cost. We argue correctness as follows: within a node, the sequence of oldLKey and oldRKey within the circuits

is an increasing sequence, and oldLKey strictly increases if we are going left, and oldRKey strictly increases if we are going

right. Note that the tKey shifting corresponds precisely to the previous windows with the only difference being now there

could be some keys set to ⊥. Thus, the only way this scheme could be incorrect is if we attempt to assign a ⊥ to oldLKey

or oldRKey. But all the ⊥ values correspond to indexes that are strictly less than the current oldLKey or oldRKey index,

and therefore cannot be the new index.

We demonstrate a series of lemmas that ensures that when some circuit needs to be simulated, all appearances of its keys

will have been in already been simulated or dropped. This strategy then allows the full simulation proof goes through as

we will see in Section VII.

VII. SECURITY PROOF

In this section we prove the UMA2-security of the black-box garbled RAM (GData, GProg, GInput, GEval).

Theorem VII.1 (UMA2-security). Let F be a PRF and (GCircuit,Eval,CircSim) be a circuit garbling scheme, both of

which can be built from any one-way function in black-box manner. Then our construction is a UMA2-secure garbled RAM

scheme for uniform access programs running in total time T < M making only black-box access to the underlying OWF.

Proof. We first prove a lemma (Lemma VII.3) before proving our main theorem. For the lemma, we consider ourselves

during the course of GEval, where we are about to evaluate some non-root node C̃i,j,k. Our eventual goal is to show that

all instances of qKeyi,j,k are in previously evaluated (hence, will be simulated) circuits, and is not being passed as part of

any tKey.

Fact VII.2. The rKeyrec to be consumed by C̃i,j,k was output by C̃i,j,k−1, or initially stored in Tab(i, j) in the case where

k = 0. The qKeyq used to evaluate C̃i,j,k was either output by (Case 1) C̃i,j,k−1 or (Case 2) C̃i−1,�j/2�,k′

for some k′.

To further pinpoint where qKeys are stored, we group the circuits in the parent node into three groups. We let k′min be

the smallest value such that 	(12 + ε)k′min
+ κ− 1 = k, and k′max be the largest value such that 	(12 + ε)k′max
 = k. For

a parent circuit C̃i−1,�j/2�,k′

, we call it a past circuit if k′ < k′min, a future circuit if k′ > k′max, and a present circuit if

k′min ≤ k′ ≤ k′max.

We now state our main lemma.

Lemma VII.3. Suppose during the execution of GEval, we are about to evaluate garbled circuit C̃i,j,k. Let qKey denote

qKeyi,j,k. Then all instances of qKey exist only in previously evaluated circuits.

223

Cnode[i, k, newLtKey, newRtKey, rKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)

Hardcoded parameters: [i, k, newLtKey, newRtKey, rKey, qKey]
Input: (rec = (lidx, ridx, oldLKey, oldRKey, tKey), q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
.

Set lidx′ := lidx and ridx′ := ridx. Set oldLKey′ := oldLKey and oldRKey′ := oldRKey.

Define ins(tKey, newLtKey, newRtKey) to be the function that outputs tKey with a possible shift: if
⌊(

1
2 + ε

)
(k + 1)

⌋
>

⌊(
1
2 + ε

)
k
⌋
, shift tKey to the left by 1 and set tKey[κ− 1] = newLtKey, tKey[2κ− 1] = newRtKey.

We now have three cases:

1) If k < p − 1 then we output (outrKey, outqKey) := (rKeyrec′ , qKeyq), where rec′ :=
(lidx′, ridx′, oldLKey′, oldRKey′, tKey′) where tKey′ = ins(tKey, newLtKey, newRtKey).

2) If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3) If p− 1 ≤ k < p+ κ then:

a) If Li = 0 then,

i) If lidx < p′ then set lidx′ := p′, goto′ := p′ and oldLKey′ := tKey[0]. Else set lidx′ := lidx+ 1, goto′ := lidx′

and if lidx′ < p′+κ then set oldLKey′ := tKey[lidx′−p′] else abort with OVERCONSUMPTION-ERROR-II.

ii) Set tKey[v] := ⊥ for all v < lidx′ − p′. Set tKey′ = ins(tKey, newLtKey, newRtKey).
iii) Set outqKey := oldLKeyq′ , where q′ := q but with goto′ replacing goto.

else

i) If ridx < p′ then set ridx′ := p′, goto′ := p′ and oldRKey′ := tKey[κ]. Else set ridx′ := ridx +
1, goto′ := ridx′ and if ridx′ < p′ + κ then set oldRKey′ := tKey[κ + ridx′ − p′] else abort with

OVERCONSUMPTION-ERROR-II.

ii) Set tKey[κ+ v] := ⊥ for all v < ridx′ − p′. Set tKey′ = ins(tKey, newLtKey, newRtKey).
iii) Set outqKey := oldRKeyq′ , where q′ := q but with goto′ replacing goto.

b) Set outrKey := rKeyrec′ where rec′ := (lidx′, ridx′, oldLKey′, oldRKey′, tKey′) and output (outrKey, outqKey).

Figure 9. Formal description of the nonleaf Memory Circuit with key passing.

Proof: We let k� denote the index of the last parent circuit that evaluated prior to our current circuit, i.e. C̃� =
C̃i−1,�j/2�,k�

was the last circuit to be evalauted at level i − 1. WLOG assume that the current circuit is the left child of

the parent. Observe that qKey only occurs in the following locations: the predecessor circuit, inside newLtKey of the final

“past” parent, or inside some “current” or “future” parent’s oldLKey or tKey. Since the predecessor circuit must be evaluated

already, we only need to check the existence of qKey inside one or more of my parent circuits.

Let lidx be the left index (implicitly) passed into C̃�, and let lidx′ be the left index (implicitly) output by it.

Observe that by definition, qKey is not in the tKey of any past or future parent. In particular, it can only be included

inside tKey when being inserted as a newLtKey, and once it is removed it can never be present again in any future parent’s

tKey. Note that qKey may still be inside newLtKey of a past parent or oldLKey of a future parent. Furthermore, all parent

circuits with index k′ ≤ k� have been evaluated, and thus we only need to argue that no (unevaluated) parent circuit k′ > k�

contains qKey as either tKey, newLtKey, or oldLKey.

We analyse the following six cases:

[Case 1A] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k� belongs to a past parent.

[Case 1B] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k� belongs to a present parent.

[Case 1C] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k� belongs to a future parent.

[Case 2A] The parent circuit C̃i−1,�j/2�,k�

output my qKeyq, and k� belongs to a past parent.

[Case 2B] The parent circuit C̃i−1,�j/2�,k�

output my qKeyq, and k� belongs to a present parent.

[Case 2C] The parent circuit C̃i−1,�j/2�,k�

output my qKeyq, and k� belongs to a future parent.

CASE 1A. This case cannot occur. Since C̃� was a past parent, by definition we must have 	(12 + ε)k�
+ κ− 1 < k. Since

qKey was passed from the predecessor circuit, it must have taken the branch where k − 1 < goto′ − 1 = 	(12 + ε)k�
 − 1.

Combining these two inequalities yields κ < 2 which is a contradiction.

CASE 1B,1C. Note that k−1 < goto′−1 still holds. We know that lidx′ ≥ goto′, so we have that lidx′ > k. Since oldLKey′

is the key for circuit lidx′, it cannot be the qKey for k. Furthermore, all keys inside tKey with index less than lidx′ have

224

The algorithm GData(1κ, D) proceeds as follows. Without loss of generality we assume that M = 2d (where M = |D|) where

d is a positive integer. We calculate ε = 1
logM .We set K0 = M , and for each 0 < i ∈ [d+1] and set Ki =

⌊(
1
2 + ε

)
Ki−1

⌋
+κ.

1) Let s ← {0, 1}κ.

2) Any dKeyd,j,k needed in the computation below is obtained as Fs(data||d||j||k). Similarly for any i, j, k, rKeyi,j,k :=
Fs(rec||i||j||k) and qKeyi,j,k := Fs(query||i||j||k).
Set

tKeyi,j,0 :=

⎧

⎪⎪⎨

⎪⎪⎩

{
qKeyi+1,2j,l

}

l∈[κ]
︸ ︷︷ ︸

left

,
{
qKeyi+1,2j+1,l

}

l∈[κ]
︸ ︷︷ ︸

right

⎫

⎪⎪⎬

⎪⎪⎭

.

and if
⌊(

1
2 + ε

)
(k + 1)

⌋
>
⌊(

1
2 + ε

)
(k)
⌋
, then set

newLtKeyi,j,k = qKeyi+1,2j,	(1

2
+ε)(k+1)
+κ−1

newRtKeyi,j,k = qKeyi+1,2j+1,	(1

2
+ε)(k+1)
+κ−1

, otherwise set newLtKeyi,j,k = newRtKeyi,j,k = ⊥.

3) For all j ∈ [2d], k ∈ [Kd],
C̃d,j,k ← GCircuit

(
1κ,Cleaf

[
d, k, dKeyd,j,k+1, qKeyd,j,k+1

]
, dKeyd,j,k, qKeyd,j,k

)
.

4) For all i ∈ [d], j ∈ [2i], k ∈ [Ki],
C̃i,j,k ← GCircuit(1κ,Cnode

[
i, k, newLtKeyi,j,k, newRtKeyi,j,k, rKeyi,j,k+1, qKeyi,j,k+1

]
, rKeyi,j,k,

qKeyi,j,k).
5) For all j ∈ [2d], set Tab(d, j) = dKey

d,j,0
D[j] .

6) For all i ∈ [d], j ∈ [2i], set Tab(i, j) := rKey
i,j,0
reci,j,0

, where reci,j,0 := (0, 0, qKeyi+1,2j,0, qKeyi+1,2j+1,0, tKeyi,j,0).

7) Output D̃ :=

({

C̃i,j,k
}

i∈[d+1],j∈[2i],k∈[Ki]
, {Tab(i, j)}i∈[d+1],j∈[2i]

)

and s.

Figure 10. Formal description of GData with passed keys.

been set to ⊥ by C̃� so no unevaluated parent circuit can have the current qKey as part of tKey or oldLKey. Finally, qKey

appearing as newLtKey can only occur in a past parent, which has already been evaluated in this case.

CASE 2A. This case cannot occur. By the definition of Cnode, the only way the parent circuit could output my qKeyq directly

is if it is held as oldLKey. However, the oldLKey is only assigned due to the value contained in an older tKey in some

parent circuit k′ ≤ k�. The indices k of any parent k′ ≤ k� parents is at most 	(12 + ε)k′
+κ−1 ≤ 	(12 + ε)k�
+κ−1 < k
by definition of k� being a past parent. Therefore, qKey could not have been output by any past parent circuit.

CASE 2B. In this case, k� belongs to a present circuit that was evaluated. Note that C̃� replaced its oldLKey = qKey with

some new oldLKey′ which corresponds to the lidx′-th circuit at level i. Since k = lidx < lidx′ and all tKey[v] is set to ⊥
for v < lidx′ − p′, the current qKey was removed from tKey by C̃� and hence all successor parent circuits’ tKey do not

contain qKey. Furthermore, oldLKey can only be updated by tKey and C̃� does not set the updated oldLKey′ to qKey, and

no parent circuit k′ > k� can set oldLKey to qKey since it is no longer contained in any of their tKey values. Finally, qKey

appearing as newLtKey can only occur in a past parent, which has already been evaluated in this case.

CASE 2C. Because k� belongs to a future parent that was evaluated, it must be the case that all past and present parents

have already been evaluated. We check that qKey does not exist in any unevaluated parent circuit’s tKey or oldLKey: all

parent circuits k′ ≤ k� have been evaluated, C̃� was evaluated and it output and replaced the qKey sitting in oldLKey with

some tKey. Since C̃� and all its successors are future parents, none of them have qKey inside its tKey and thus oldLKey

would never contain qKey. Finally, qKey appearing as newLtKey can only occur in a past parent, which has already been

evaluated in this case.

We now proceed to prove the theorem. Let CircSim be the garbled circuit simulator. Suppose in the real execution, a

total of w circuits are evaluated by GEval. We construct Sim and then give a series of hybrids Ĥ0, H0, . . . , Hw, Ĥw such

that the first hybrid outputs the (D̃, P̃ , x̃) of the is the real execution and the last hybrid is the output of Sim, which we

225

will define. H0 is the real execution with the PRF F replaced with a uniform random function (where previously evaluated

values are tabulated). Since the PRF key is not used in evaluation, we immediately obtain Ĥ0
comp≈ H0.

Our goal is to build a garbled memory, program, and input that is indistinguishable from the real one. Since we know

exactly the size and running time and memory access, we can allocate the exact correct amount of placeholder garbled

circuits, initially set to ⊥. The simulator considers the sequence of circuits (starting from 1) that would have been evaluated

given MemAccess. This sequence is entirely deterministic and therefore we let S1, . . . , Sw be this sequence of circuits, e.g.

S1 = C̃0(the first CPU circuit), S2 = C̃0,0,0(the first root circuit), The idea is to have Hu simulate the first u of these

circuits, and generate all other circuits as in the real execution.

Hybrid Definition: (D̃, P̃ , x̃) ← Hu

The hybrid Hu proceeds as follows: For each circuit not in S1, . . . , Su, generate it as you would in the real execution,

and for each circuit Su, . . . , S1 (in that order) we simulate the circuit using CircSim by giving it as output what it would

have generated in the real execution or what was provided as the simulated input labels. Note that this may use information

about the database D and the input x, and our goal is to show that at the very end, Sim will not need this information.

We now show Hu−1
comp≈ Hu. There are several cases: when Su is a non-root node, when Su is a root node, and when

Su is a CPU step circuit. In the first case, we must argue that one can replace Su from a real distribution to one output by

CircSim. In order to do so, we must show that its input keys are independent of the rest of the output. Its garbled inputs are

rKeyrec and qKeyq. rKey only existed in its predecessor circuit, which was simulated since it was executed in some hybrid

u′ < u. Furthermore, by Lemma VII.3, all instances of qKey only exist in previously evaluated circuits, hence they were

also simulated out in some earlier hybrid. Therefore, any distinguisher of Hu−1 and Hu can be used to distinguish between

the output of CircSim and a real garbling.

When Su is a root node, the only circuit that has its rKey was its predecessor, and the only circuits that have its qKey are

its predecessor or the CPU step circuit that invoked it. Both of these circuits were simulated in a earlier hybrid, and so once

again any distinguisher of Hu−1 and Hu can be used to distinguish between the output of CircSim and a real garbling.

Finally, if Su is a CPU step circuit, the only circuit that has its cpuSKey was its predecessor (or the initial garbled input),

but its cpuDKey was passed around across the entire tree starting from its predecessor. However, again, these were all

simulated in an earlier hybrid, so again, any distinguisher of Hu−1 and Hu can be used to distinguish between the output

of CircSim and a real garbling.

Finally, we mention how to handle unevaluated circuits in hybrid Ĥw. Note that the security definition of CircSim does

not deal with partial inputs, though this can be handled generically as follows. We encrypt each circuit using a semantically

secure symmetric key-encryption scheme with a fresh key for each circuit and secret share the key into two portions. We

augment each rKey/dKey by giving it one share (in the clear), and the qKey will have the other share. In unevaluated

circuits, the qKey never appears, so the secret encryption key is information theoretically hidden, and thus by the semantic

security of the encryption scheme, we can replace all unevaluated circuits with encryptions of zero. This is formally stated

and proven in the full version [GLO15].

Then our simulator Sim(1κ, 1M , 1t, y, 1D,MemAccess = {Lτ , zread,τ , zwrite,τ}τ=0,...,t−1) can output the distribution Ĥw

without access to D or x. We see this as follows: the simulator, given MemAccess can determine the sequence S1, . . . , Sw.

The simulator starts by simulating all unevaluted circuits by replacing them with encryptions of zero. It then simulates the

Su in reverse order, starting with simulating Sw using the output y, and then working backwards simulates further ones

ensuring that their output is set to the appropriate inputs.

VIII. FULL SECURITY AND REPLENISHING

In this section, we prove the full security by showing how to compile any UMA2-secure GRAM scheme with statistical

ORAM. First, we show how to extend our construction to running times beyond M by replenishing.

A. Circuit Replenishing

Although we observed that “dynamic” circuit replenishing is potentially problematic, here we give a method of allowing

GProg to replenish circuits. Note that in GData there was no need to generate some fixed amount of circuits at the root,

but it was bounded to be proportional to M in order for it to not run too long. However, using the exact same template,

an exponential amount of circuits could be generated: as long as the domain of the PRF is not exhausted, one can always

generate more circuit labels that follow this exact pattern.

Using this observation, we can then view our circuit replenishing as a way to amortize this process rather than making

dynamic replacements on the fly. That is to say, when we make new circuits, they will be concatenated on to the end of the

sequence of circuits of each node. In order to replenish, we give a replenishment strategy so that GProg will be augmented

226

to perform the following functionality. A program at time m running for t steps will replenish some t ·poly(logM, log T, κ)
number of circuits in such a way that after M steps, a total of S =

∑d
i=0(2

iKi) circuits will be replenished, where Ki is

as defined in GData, thus providing us with a number of new circuits that is as large as the original number of original

circuits provided. We provide the details on how this is done in the full version [GLO15].

B. Compiling with Statistical ORAM to get full security

In order to achieve this, we show how to compile our UMA2-secure GRAM scheme with a statistical ORAM that has

uniform access pattern to achieve a secure GRAM scheme. However, schemes such as [SvDS+13] are tree-based and have

uniform access pattern only on each level of their tree. That is to say, on each level, the access pattern is uniform, though

not necessarily on the entire tree.

Leveled Memory: In order to combat this issue, we make several independent copies of memory, each corresponding

to a level in the ORAM tree. Then each CPU step will have the key corresponding to the memory block of one level of the

ORAM tree. Indeed, this is a generic method of handling leveled memory, though one possible avenue of concrete benefits

is “marrying” together the underlying ORAM tree with our GRAM tree. We give a more formal description in the full

version [GLO15].

The last step is to combine ORAM with UMA2-secure GRAM to obtain fully secure GRAM. The proof is nearly identical

to extending UMA-secure GRAM to fully secure GRAM, so we paraphrase previous works [LO13b], [GHL+14], [GLOS15]

and we show this in the full version [GLO15].

Putting it all together, we obtain our main theorem.

Theorem VIII.1 (Full security). Assuming only the existence of one-way functions, there exists a secure black-box garbled

RAM scheme for arbitrary RAM programs. The size of the garbled database is Õ(|D|), size of the garbled input is Õ(|x|)
and the size of the garbled program and its evaluation time is Õ(T) where T is the running time of program P . Here

Õ(·) ignores poly(log T, log |D|, κ) factors where κ is the security parameter. Furthermore, because garbled RAM trivially

implies one-way functions, there is a black-box equivalence of the existence of one-way functions and garbled RAM.

Additional observations: Instead of storing data only at the leaves, we can store the data at all levels of the tree and

pull an entire path of values from the tree down into the CPU step. This is conducive to certain ORAM schemes (e.g.

Path ORAM [SvDS+13]) which also follow this nature and can be used to obtain additional savings. Furthermore, in our

construction, one can consider handling a non-uniform distribution of memory accesses. As long as the distribution of leaf

accesses are data-independent and known in advance, we can assign to each leaf a probability it is accessed. Then each

parent inherits a probability that is the sum of its two childrens’ probabilities. Based on this new distribution, one can

provide a different number of circuits per node as according to this distribution. This would lead to a concrete efficiency

improvement for GRAM in the case of certain oblvious algorithms with simple CPU steps and access patterns that are

distributed in some known fashion.

ACKNOWLEDGMENTS

We thank Alessandra Scafuro for her contribution during the initial stages of the project. First author is supported by

NSF CRII Award 1464397. Second and third authors are supported in part by NSF grants 09165174, 1065276, 1118126

and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox

Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation

Research Award. This material is based upon work supported by the Defense Advanced Research Projects Agency through

the U.S. Office of Naval Research under Contract N00014 -11 -1-0392. The views expressed are those of the author and do

not reflect the official policy or position of the Department of Defense or the U.S. Government.

REFERENCES

[ACG+14] Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and Rafail Ostrovsky. Achieving privacy in
verifiable computation with multiple servers - without FHE and without pre-processing. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 149–166. Springer, March 2014.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification via secure
computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,
editors, ICALP (1), volume 6198 of Lecture Notes in Computer Science, pages 152–163. Springer, 2010.

[Ajt10] Miklós Ajtai. Oblivious RAMs without cryptogrpahic assumptions. In Leonard J. Schulman, editor, 42nd ACM STOC, pages
181–190. ACM Press, June 2010.

227

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th ACM STOC, pages
479–488. ACM Press, May 1996.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications. In STOC, pages
103–112, 1988.

[BGT14] Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized encodings and their applications. Cryptology ePrint
Archive, Report 2014/771, 2014. http://eprint.iacr.org/2014/771.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM Conference on Computer and Communications Security, pages 784–796. ACM, 2012.

[CHJV14] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishability obfuscation of iterated circuits
and RAM programs. Cryptology ePrint Archive, Report 2014/769, 2014. http://eprint.iacr.org/2014/769.

[CLP14] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with Õ(log2 n) overhead. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 62–81. Springer, December 2014.

[CR73] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. J. Comput. Syst. Sci., 7(4):354–375,
1973.

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM without random oracles. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 144–163. Springer, March 2011.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs under general assumptions.
SIAM Journal of Computing, 29(1):1–28, 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st ACM STOC, pages
169–178. ACM Press, May / June 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October
2013.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs. Garbled RAM revisited. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 405–422. Springer, May
2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private RAM computation. In 55th FOCS,
pages 404–413. IEEE Computer Society Press, October 2014.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis.
Secure two-party computation in sublinear (amortized) time. In CCS, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. How to run turing
machines on encrypted data. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 536–553. Springer, August 2013.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. Cryptology ePrint Archive, Report 2015/307, 2015.
http://eprint.iacr.org/2015/307.

[GLOS14] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from one-way functions. Cryptology
ePrint Archive, Report 2014/941, 2014. http://eprint.iacr.org/2014/941.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from one-way functions. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 449–458. ACM Press, June 2015.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable commitments: A black-box
approach. In 53rd FOCS, pages 51–60. IEEE Computer Society Press, October 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols
with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

228

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. J. ACM, 43(3):431–473,
1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Alfred Aho, editor, 19th
ACM STOC, pages 182–194. ACM Press, May 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np. In Proceedings of Eurocrypt
2006, volume 4004 of LNCS, pages 339–358. Springer, 2006.

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box non-black-box zero knowledge. In David B.
Shmoys, editor, 46th ACM STOC, pages 515–524. ACM Press, May / June 2014.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions for secure computation. In Jon M.
Kleinberg, editor, 38th ACM STOC, pages 99–108. ACM Press, May 2006.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, August 2003.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations. In 21st ACM STOC,
pages 44–61. ACM Press, May 1989.

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 8–26. Springer, August 1990.

[LO13a] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computation. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 377–396. Springer, March 2013.

[LO13b] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 719–734. Springer, May 2013.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology,
22(2):161–188, April 2009.

[LP14] Huijia Lin and Rafael Pass. Succinct garbling schemes and applications. Cryptology ePrint Archive, Report 2014/766, 2014.
http://eprint.iacr.org/2014/766.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In 29th ACM STOC, pages 294–303.
ACM Press, May 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In 22nd ACM STOC, pages 514–523. ACM Press, May 1990.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM, 26(2):361–381, 1979.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way functions. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 403–418. Springer, March 2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald
Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with o((log n)3) worst-case cost. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 197–214. Springer, December
2011.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path
ORAM: an extremely simple oblivious RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13, pages 299–310. ACM Press, November 2013.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification. In 51st FOCS, pages
531–540. IEEE Computer Society Press, October 2010.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM: Oblivious RAM for secure
computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 191–202. ACM Press, November
2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages 160–164. IEEE Computer
Society Press, November 1982.

229

