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Zhang et al. (2012) and purifie with normal-phase column
chromatography until the estimated purity based on nuclear
magnetic resonance (NMR) of the cis and trans β-IEPOX
isomers are 99 % and > 92 %, respectively. Details of the syn-
thesis and NMR spectra are reported in Bates et al. (2014).
Although the mole fractions of the impurities are low, their
high volatility may lead to an over-represented abundance in
the gas phase. For the cis isomer, we detected experimen-
tal interference from the volatile 1,4-dihydroxy-2-methyl-2-
butene (a precursor used in the synthesis), comprising ∼50 %
of the vapor phase measured directly above a bulb of IEPOX
droplets by chemical ionization mass spectrometry (CIMS,
Sect. 2.2). In order to further purify before experiments were
conducted, cis β-IEPOX droplets were purged with dry N2,
and combined with 60 ◦C heating for > 8 h until the measured
impurity fraction dropped below 2 % (Fig. S1 in the Supple-
ment). After the additional purification IEPOX was injected
into the chamber by fl wing a 5–8 L min−1 stream of dry pu-
rifie air past several droplets in a clean glass bulb heated to
60 ◦C for 2–4 h. The mixtures of IEPOX and seed aerosols
were allowed to equilibrate for > 1 h. Most of the experi-
mental conditions were repeated and were found to be repro-
ducible within 15 %. We expect systematic error to dominate
over the error of precision in this work.

2.2 Analytical methods

2.2.1 Chemical ionization mass spectrometry (CIMS)

Gas-phase IEPOX was measured with negative-ion chemical
ionization mass spectrometry (CIMS) using CF3O− as the
reagent ion, described in more detail previously (Crounse
et al., 2006; Paulot et al., 2009a; St. Clair et al., 2010).
The mass analyzer is a Varian triple-quadrupole spectrometer
with unit mass resolution. Air is brought from the chamber
using a 3 mm inner diameter perfluoroal oxy (PFA) Teflo
line with fl w rate of 2.5 L min−1. Of the total chamber
fl w, a 145 mL min−1 analyte fl w was sampled orthogonally
through a glass critical orific into the CIMS. The analyte
fl w was further diluted by a factor of 12 with dry N2 to
minimize the interaction of water vapor from the chamber
with the reagent ion in the ion-molecule fl w region. The
subsequent data analysis corrects for the dilution factor. The
operational pressure and temperature were kept at 35.5 hPa
and 35 ◦C, respectively. The CIMS operated in a scanning
MS mode (m/z 50–250) and tandem MS mode (MSMS). In
MSMS mode, collisionally induced dissociation (CID) with
2.6 hPa of N2 fragments analyte ions into product ions in the
second quadrupole, following the ejection of neutral species.
The MS cluster ion C5H10O3 · CF3O− (m/z 203) of IEPOX
was used for quantification due to the higher signal-to-noise
(S / N) of this ion compared to MSMS ions. The MSMS prod-
uct ion C5H9O3 · CF2O− (m/z 203 → m/z 183), found to
be unique to IEPOX in the isoprene OH-oxidation system,
was used to differentiate IEPOX from the isobaric isoprene

hydroperoxide (ISOPOOH), which has been documented to
yield mainly m/z 63 and a negligible amount of m/z 183
upon CID (Paulot et al., 2009b). ISOPOOH (m/z 203 →

m/z 63), was not expected, nor observed, during IEPOX in-
jections.

CIMS calibrations of cis and trans β-IEPOX were per-
formed by separately atomizing dilute (1–3 mM) solutions of
each isomer with equimolar concentrations of hydroxyace-
tone, used as an internal standard, into the chamber through
a 15 cm PFA Teflo transfer line for a few hours. During
synthesis, NMR analysis showed that IEPOX was stable in
water solution for many hours if no acid was present, so
decay of IEPOX in the atomizer solution was not expected
over the course of the calibration experiment. Toluene was
used as a tracer to obtain the exact volume of the Teflo
bag for each calibration experiment. A measured volume of
toluene (6 µL) was injected into a clean glass bulb with a
microliter syringe (Hamilton) and quantitatively transferred
into the chamber with a 5 L min−1 stream of dry purifie
air. The gas-phase toluene was monitored by commercial
gas chromatograph with flame-ionizatio detector (GC-FID,
Hewlett-Packard 6890N) using a calibrated HP-5 column
(15 m, 0.53 mm i.d.). The initial chamber temperature was
35 ◦C, and the temperature was ramped until 45 ◦C or until
no increase of IEPOX signal was observed in the CIMS. The
atomized solution was weighed before and after atomization.
Each sensitivity determination was repeated at least twice.
The sensitivities of the IEPOX isomers were calculated from
the ratio of the normalized ion counts (with respect to the
reagent ion signal) to the number of atomized moles. Small
amounts of nucleated organic aerosols were observed in the
chamber from the atomization, as measured by a scanning
mobility particle sizer (Sect. 2.2.3) and that volume concen-
tration was subtracted from the theoretical moles of IEPOX
(corrections of < 1 %). Based on their calculated dipole mo-
ments and average polarizability, the cis isomer was expected
to have a sensitivity of ∼1.6 times greater than the trans iso-
mer (Paulot et al., 2009b), and we found the sensitivity of the
cis isomer to be a factor of 1.8 greater than the trans isomer
in the MS mode. The difference between the two ratios is
within the error of the sensitivity determination.

Additionally, several mixing ratios of water vapor were in-
troduced into the CIMS ion-molecule region to measure the
water dependence of the IEPOX detection. Water vapor was
quantifie by Fourier-transform infrared spectroscopy (FT-
IR, Nicolet Magna-IR 560) with a 19 cm pathlength quartz
cell. Spectral fittin was performed using the HITRAN spec-
tral database (Rothman et al., 2009) and the nonlinear fittin
software NLM4 developed by Griffit (1996). In the low-
RH range, outside the calibration limit of the membrane RH
probe, the CIMS water ions H2O ·

13CF3O− (m/z 104) and
(H2O)2 · CF3O− (m/z 121) were used to quantify water va-
por concentration in the chamber after calibration of water
vapor with FT-IR. These ions provide excellent sensitivity to
water and linearity in the 20–3500 ppm range in the CIMS
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ion molecule fl w region (corresponding to 1–100 % RH in
the chamber at 24 ◦C, before CIMS dilution). No water de-
pendence in the detection of the IEPOX ions was observed
within the range of water vapor observed by CIMS.

In order to quantify the gas-phase concentrations of
IEPOX, the CIMS signal was corrected to account for the
RH-dependent wall losses of IEPOX. The interactions of
IEPOX with chamber walls have not been previously char-
acterized, although those of its C4 analog have been reported
(Loza et al., 2010). IEPOX wall loss experiments were con-
ducted at RH = 3 %, 46 %, and 69 %, as described in Section
2.1, continuously for 5–10 h. Figure S2 shows that the wall
losses of IEPOX on non-acidic walls were negligibly small
(∼0.4 % h−1 at RH 69 %), within the error of CIMS mea-
surements.

2.2.2 Aerosol mass spectrometry (AMS)

Online particle composition was measured with a high-
resolution time-of-fligh aerosol mass spectrometer (ToF-
AMS, Aerodyne Research Inc.). The ToF-AMS was operated
in V mode (R ∼2000 at m/z 200) and W mode (R ∼3000–
4000 at m/z 200). Prior to experiments, the ToF-AMS ion-
ization efficien y was calibrated using size-selected 350 nm
ammonium nitrate particles. The ToF-AMS monitored the
content of ammonium (NH+

4 ), sulfate (SO2−

4 ) and other non-
refractory ions throughout the course of the experiment. The
ammonium to sulfate ratio did not change over the course of
the experiment. Gas interferences and elemental ratios were
calculated using the fragmentation tables developed by Al-
lan et al. (2004) and Aiken et al. (2008). Data were analyzed
in IGOR Pro 6.31 (WaveMetrics, Inc.) using the SQUIR-
REL v 1.51H and PIKA v 1.10H analysis toolkits. Total con-
centration of organics (µgm−3) was calculated by summing
the nitrate-equivalent masses of each high-resolution ion cor-
related with the organic fraction from the V-mode data.

Particles were sampled through a 130 cm Nafio mem-
brane diffusion drier (MD-110, Permapure LLC) to avoid
fl w obstructions from wet particles over time, at a fl w rate
of 0.084 L min−1. It is expected that drying the particles may
introduce particle or organic line losses in the drier tube and
change the particle bounce characteristics on the AMS vapor-
izer plate. These perturbations may be corrected by apply-
ing a collection-effici ncy (CE) factor. It was demonstrated
that organic aerosol particles with higher water content have
very low bounce probability, which corresponds to a CE of
unity (Matthew et al., 2008; Docherty et al., 2013). Compar-
atively, dry particles have much lower CE (∼0.25 for pure,
dry AS) due to the high bounce rate. The CE of IEPOX-
derived organic aerosol-coated particles was calculated by
measuring the mass concentrations of organics, sulfate, and
ammonium of the wet particles without a drier, wherein CE
was assumed to be unity and line losses assumed to be neg-
ligible, and comparing with measurements made through a
drier. We observe a CE of 0.75 for all conditions in this work,

which is consistent with the collection efficien y of organic
aerosols measured previously (Docherty et al., 2013). Fur-
ther, it is expected that drying particles, relevant to the hy-
dration/evaporation cycles of aerosols in nature, may lead to
enhanced interactions between organic and inorganic com-
pounds (De Haan et al., 2011; Nguyen et al., 2012), irre-
versibly forming OA.

2.2.3 Particle size and number concentration

Particle size and number concentrations were measured with
a scanning mobility particle sizer (SMPS), comprised of a
custom-built differential mobility analyzer (DMA) coupled
to a commercial butanol-based condensation particle counter
(CPC, TSI Inc.). The SMPS particle size measurement was
calibrated with polystyrene latex (PSL) spheres. The parti-
cles entering the chamber have a static polydisperse distri-
bution, with peak dry particle diameter distributions in the
range of 50–100 nm. The sample air fl w was not dried in
humid experiments. Particle mass concentrations were cor-
rected for RH- and size-dependent wall losses. The mass con-
centration of particles typically ranged from 65–90 µgm−3

for all experiments, using a particle density of 1.2 g cm−3.
For AS-based experiments, the particle liquid water con-

tent was calculated based on the size-dependent hygroscop-
icity of AS (Biskos et al., 2006; Hu et al., 2010). For each
particle diameter bin measured by SMPS, a theoretical dry
diameter was calculated based on size-dependent literature
growth factor data at the RH of the experiment. The differ-
ence in the wet (measured) and dry (calculated) integrated
area of the mass distribution yielded the liquid water concen-
tration in g m−3. Similarly, the percent of liquid water con-
tent is calculated as % LWC = 100 % × (Vwet–Vdry)/Vwet, us-
ing the predicted wet and dry diameters.

Particle wall loss characterizations were performed for AS
seeds at RH = 3 %, 20 %, 50 %, and 80 % prior to the start of
the experimental series to correctly quantify the mass con-
centrations of particles as a function of time. It was assumed
that the loss rates of AS were representative for particles
of different composition. Seed aerosols were atomized into
the dry or humid chambers in the dark, allowed to stabilize,
and particle size and number concentrations were measured
for > 12 h. The particle correction method that accounts for
wall loss has been discussed in detail previously (Loza et al.,
2012).

2.2.4 Filter collection and analysis

Offlin OA composition analysis was performed by ultra-
high performance liquid chromatography time-of-fligh elec-
trospray ionization mass spectrometry (UPLC/ESI-ToFMS).
Aerosol samples were collected onto Tef on membrane fil
ters (Millipore, 1 µm pore), pulled at a 20 L min−1 fl w
through an activated charcoal denuder to remove the volatile
and semivolatile components. Each filte was extracted with
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methanol (Fisher, Optima grade, ≥ 99.9 %) by ultrasonica-
tion for 15 min in a 20 mL scintillation vial. The filtere ex-
tracts were blown dry under a gentle stream of ultra-high-
purity N2. The residue was reconstituted with 150 µL of
50 : 50 v / v acetonitrile (Fisher Optima grade, ≥ 99.9 %) and
water (Milli-Q).

Extracts were analyzed by a Waters Xevo G2-S
UPLC/ESI-ToF-MS equipped with an Acquity CSH C18 col-
umn (1.7 µm, 2.1 × 100 mm). The solvents used for gradi-
ent elution were acetonitrile (Fisher Optima grade, ≥ 99.9 %)
and water with a 0.1 % formic acid spike (solvent “A”). The
fl w rate was held at 0.5 mL min−1. Accurate mass correc-
tion was completed by a lock spray of leucine enkephalin
(0.61 ng µL−1 in 50 : 50 v / v acetonitrile / water with 0.1 %
formic acid). The ESI source was operated in negative mode,
where most analytes are ionized by deprotonation and mea-
sured as [M-H]−. Ionic molecular formulas were determined
from accurate masses (mass resolution of 60 000 at m/z 400)
using the elemental composition tool in Mass Lynx. Control
filter (no particles) and laboratory controls (seeds only) were
analyzed in the same manner.

3 Results and Discussion

3.1 Reactive uptake of cis and trans β-IEPOX onto
ammonium sulfate seeds

3.1.1 Liquid water content of seeds

Figure 1 shows the time profil for the organic aerosol (OA)
growth corresponding to reactive uptake of the trans β-
IEPOX onto ammonium sulfate (AS) seeds at two RH con-
ditions, dry (LWC ∼0 %) and RH 57 % (LWC ∼55 %). The
traces shown in Fig. 1 are representative of uptake behav-
ior for both isomers on the experimental timescale. For RH
conditions above the ammonium sulfate (AS) efflorescenc
point tested in this work (ERH ∼35 %, (Biskos et al., 2006)),
prompt and efficien OA growth onto AS seeds was observed
for both IEPOX isomers. No OA growth was observed when
the AS seeds were dry, in good agreement with other reports
(Lin et al., 2012, Surratt et al., 2010).

The OA growth from IEPOX did not halt after the end
of the gas-phase injection period (Fig. 1, solid black line),
even after periods of > 2 h (Fig. S3, top panel). This behav-
ior is indicative of a non-equilibrium process, as the addition
of nucleophiles is not reversible after the rate-limiting step
of IEPOX activation (Eddingsaas et al., 2010). The forma-
tion of low-volatility compounds should continue as long as
a reservoir of gas-phase IEPOX is available. The series of
expected reactions leading to the formation of ring-opening
products (ROP) is shown below, illustrated using a general
proton donor (AH) and nucleophile (Nu).

IEPOX(g) � IEPOX(aq),KH (R1)
IEPOX(aq) + AH � IEPOX − H+

+ A−H,kAH (R2)

 

 

Fig. 1. Typical uptake experiment results as a function of time,
shown for trans isomer, at dry (top) and humid (bottom) conditions
with the corresponding percent of liquid water content (LWC). The
solid black line indicates when IEPOX injection stopped and the
mixture was allowed to equilibrate. Double y axes correspond to
traces of the same color.

IEPOX − H+
+ Nu → ROP − H+,kNu (R3)

ROP − H+
+ A−H → ROP + AH,kneutral (R4)

For a solution with low AH and Nu activity, the equilibrium
accommodation of IEPOX into the aqueous phase, described
by the Henry’s Law coefficien of IEPOX (KH), can be mea-
sured in isolation. Henry’s Law may not be an appropriate
description of the IEPOX reactive uptake experiments per-
formed on the liquid water of suspended aerosols, as the
aerosol water layers represent highly non-ideal solutions and
the OA formation is kinetically limited. The OA formation
mechanism may include contributions from reactions other
than Reactions (1–4). To a first-orde approximation, total
OA mass formed from gas-phase reactive uptake of IEPOX
will be a function of aqueous IEPOX concentration, nucle-
ophile activity, and catalyst activity.

For the sake of comparison between experiments, it is use-
ful to have a metric that includes the ratio of OA formed
to gas-phase IEPOX injected and accounts for the variabil-
ity in the size and number of injected seeds between ex-
periments, which is reflec ed by the calculated aerosol wa-
ter at different RH. We defin here a reactive partitioning
coefficien (8OA/IEPOX), calculated similarly to an effective
Henry’s Law coeffici nt, and thus having the same units (Se-
infeld and Pandis, 2006):

8OA/IEPOX = (COA /CIEPOX)/[10−6
· R · T · PLWC], (1)

where (COA/CIEPOX) is the mass concentration ratio of the
IEPOX-derived organic aerosol (dried), measured by ToF-
AMS, and the gas-phase IEPOX, measured by negative-ion
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Table 1. Summary of results from representative reactive uptake experiments onto ammonium sulfate seeds. Mean results from Lin et
al. (2012) are shown for comparison.

Exp. index IEPOX isomer Seed composition RH ( %) Particle pH∗ Seed (µgm−3) PLWC (g m−3) COA / CIEPOX 8OA/IEPOX
(M atm−1)

1 cis (NH4)2SO4 3 – 70 < 1 × 10−6 5.04 × 10−4 –
2 cis (NH4)2SO4 42 3.67 91 3.74 × 10−5 0.102 1.15 × 108

3 cis (NH4)2SO4 50 3.74 92 4.79 × 10−5 0.118 1.01 × 108

4 cis (NH4)2SO4 86 3.90 81 5.68 × 10−5 0.179 4.00 × 107

5 trans (NH4)2SO4 2 – 65 < 1 × 10−6 4.74 × 10−4 –
6 trans (NH4)2SO4 39 3.65 82 3.44 × 10−5 0.090 1.06 × 108

7 trans (NH4)2SO4 57 3.77 89 4.64 × 10−5 0.095 8.44 × 107

8 trans (NH4)2SO4 81 3.88 88 6.14 × 10−5 0.115 7.66 × 107

9 trans (NH4)2SO4 + NaOH, pH = 7 70 ∼5.5 84 5.33 × 10−5 0.090 6.89 × 107

Lin et cis MgSO4 + H2SO4 (1 : 1) < 5 ∼-10 48 1.62 × 10−5∗∗ 0.058 1.47 × 108

al. (2012)
∗ Modeled pH using E-AIM and AIOMFAC models (the value from (Lin et al., 2012) is amolality-based pH), see text (Sect. 3.1.2).
∗∗ Based on hygroscopicity of H2SO4 at RH 5 %, assumed growth factor 1.15, Xiong et al. (1998).

CIMS, PLWC is the liquid water content of the inorganic
aerosols prior to IEPOX introduction (g m−3), R is the ideal
gas constant (atm L mol−1 K−1), T is the temperature (K),
and 10−6 is a conversion factor (m3 cm−3). 8OA/IEPOX in-
cludes the contribution from Henry’s Law equilibrium parti-
tioning of IEPOX (Reaction R1), and thus is an upper limit
for the effective Henry’s Law constant.

We observe that 8OA/IEPOX was not time-dependent
when both IEPOX and OA were increasing, as the ratio
COA/CIEPOX stabilized when OA grew in response to gas-
phase IEPOX (Fig. S3) but increased after IEPOX injection
stopped. The stabilized ratio is used for 8OA/IEPOX calcula-
tions to compare between experiments. PLWC did not have
a significan time dependence due to a stable particle vol-
ume distribution before IEPOX gas-phase injections. The un-
certainties in the accuracy of the 8OA/IEPOX and KH mea-
surements were estimated to be −50 % and +100 %, com-
pounded from the uncertainties in the calculated CIMS sen-
sitivities, liquid water fraction, AMS organic mass determi-
nations, and other measurements.

A summary of 8OA/IEPOX and other values is given in Ta-
ble 1 for all AS-based uptake experiments. Figure 2 shows
8OA/IEPOX, as a function of particle liquid water, for the cis
and trans β-IEPOX uptake onto hydrated AS. A trend of de-
creasing 8OA/IEPOX with increasing LWC was reproducibly
observed, despite the uncertainty range in the 8OA/IEPOX de-
terminations. The suppression of 8OA/IEPOX as a function
of added water is likely due to dilution. For example, high
aerosol sulfate concentrations may cause a “salting-in” ef-
fect for IEPOX, or other water-soluble organic compounds
(Kampf et al., 2013), which is inversely proportional to wa-
ter content. Higher water may also reduce the [H+], although
the dependence of the reaction on catalyst concentrations is
not expected to be high. Additionally, higher PLWC dilutes
the aqueous IEPOX and nucleophile concentrations in the
aerosol liquid water, which reduce the rate of the chemical
reaction as these species are direct reagents. The dilution ef-

Fig. 2. Reactive partitioning coefficient (8OA/IEPOX) during the
gas-phase IEPOX injection phase for the trans and cis isomers as a
function of the particle liquid water concentration. Error bars indi-
cate experimental uncertainty as described in the text.

fect from increasing the pure water fraction at a fi ed ion
content (moles of NH+

4 and SO2−

4 ) is in contrast to a mod-
eled increase in OA mass in areas with high “anthropogenic
water”, in other words, mixtures of water-soluble compounds
found in urban regions (Carlton and Turpin, 2013). In the at-
mosphere, the partitioning of anthropogenic gases like NH3
and SO2 will simultaneously impact aqueous acidity and in-
organic concentration and thus may lead to enhanced OA for-
mation in areas with higher PLWC.

3.1.2 Particle acidity

As the decrease of 8OA/IEPOX with increasing liquid water
content may be due to more than one factor, an experiment
was carried out to isolate the effect of pH. In experiment 9
(Table 1), the AS solution was neutralized with a strong base

Atmos. Chem. Phys., 14, 3497–3510, 2014 www.atmos-chem-phys.net/14/3497/2014/
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(NaOH) until the atomizer solution reached pH = 7. Solutions
of AS without additives had pH ∼5.5 before atomization be-
cause, although no strong acid was present, H+ is expected
to be present in small quantities based on the dissociation
equilibria of inorganics, such as the bisulfate/sulfate dissoci-
ation, and dissolution of CO2. An enhancement in the acidity
of the particle may result from a smaller volume of water in
the particle and/or through loss of NH3 upon atomization.
In the case of a fully hydrated AS particle, the pH in the
particle is predicted to be pH ∼4 using the E-AIM Model
(Clegg et al., 1998), and modeled pH values in the parti-
cle for all AS-based experiments are shown in Table 1. As
the pH values of the particles in this work are derived using
inorganic models, the values obtained may include any un-
certainties inherent in the models, including uncertainties in
the gas/particle partitioning of NH3, hygroscopicity of salts,
and/or acid dissociation equilibria. When the RH is below the
deliquescence point of AS, the pH was estimated by calcu-
lating a concentration factor from the PLWC at the lower RH.
It is expected that atomization will also lead to slightly lower
pH for the base-neutralized atomizer solution, so the particle
may have pH < 7. However, adding NaOH above neutraliza-
tion to counter this effect may induce side reactions such as
base-catalyzed epoxide opening and OH− nucleophilic ad-
dition (Solomons and Fryhle, 2004). NaOH is not explicitly
treated in the E-AIM and AIOMFAC (Zuend et al., 2008) in-
organic models, therefore, it was assumed that atomization
of the AS + NaOH solution may lead to, at most, the same
enhancement factor that occurred for the pH of the pure AS
solutions.

Figure 3 shows that 8OA/IEPOX for the trans β-IEPOX +

AS system decreases slightly as pH is increased, reaching
a plateau above pH ∼4. We note that any perceived change
is within the error of the measurement, however, it is clear
that the trend of 8OA/IEPOX with pH is minor. These results
differ from those of Eddingsaas et al. (2010), who observed
a linear increase of epoxide reaction rate with H+ activity.
Eddingsaas et al. (2010) used H2SO4/Na2SO4 solutions, and
thus the differences in observations may be entirely due to the
high NH+

4 activity in the AS particles employed in this work.
The data suggest that when [H+] is small, NH+

4 may acti-
vate reactions leading to OA formation, similarly to its cat-
alytic activity toward glyoxal (Noziere et al., 2009), methyl-
glyoxal (Sareen et al., 2010), and other carbonyls (Nguyen
et al., 2013, Bones et al., 2010). Interestingly, pH > 4 is the
range where NH+

4 catalysis is most efficient This is demon-
strated by a stable reactivity of the NH+

4 -catalyzed reaction
to generate brown carbon from limonene SOA at pH 4–9,
but a sharp decline of reactivity below pH 4 (Nguyen et al.,
2012). As the H+ and NH+

4 ions are reactive toward organics
in low-moderate and moderate-high pH ranges, respectively,
the resulting pH dependence may appear to be weak in AS-
containing seeds. The dual reactivities of H+ and NH+

4 to-

Fig. 3. 8OA/IEPOX for the trans β-IEPOX isomer as a function of
the modeled particle pH.

ward IEPOX is expected to be important in nature, as NH+

4 -
based seeds are abundant.

In comparison, the MgSO4 : H2SO4 particles at RH < 5 %
in the work of Lin et al. (2012) are strongly acidic. These
particles are predicted to have a non-negligible amount of
water due to the large hygroscopicity of H2SO4 – and in-
deed, acidity in particles is not a useful concept if water
is not present. At RH = 0–5 %, pure H2SO4 particles have
a growth factor of 1.1–1.2 (Xiong et al., 1998). Assum-
ing a growth factor of 1.15, and taking into consideration
the inorganic seed mass concentration, we calculated PLWC
for the mean results in Lin et al. (2012), shown in Ta-
ble 1. The AIOMFAC Model (Zuend et al., 2008; Zuend
et al., 2011) was used to estimate the pH based on the
molal activity of H+ in the MgSO4:H2SO4 (1 : 1) parti-
cle. The calculated pH is ∼ −10 and the corresponding
mean 8OA/IEPOX is ∼1.5 × 108 M atm−1 for cis β-IEPOX
(the trans isomer was not studied). 8OA/IEPOX for the acidic
MgSO4 seeds is slightly higher than, but within the error
of, the 8OA/IEPOX values for non-acidifie AS seeds when
a small amount of water is present (RH ∼40 %). This com-
parison is meant to be qualitative and subject to uncertainty
because the experiments were not performed under the same
conditions. Nevertheless, the comparison shows that a solu-
tion of high H+ activity and a solution of high NH+

4 activ-
ity may both lead to a relatively similar reactive uptake co-
efficient As [NH+

4 ] � [H+] in the particles in this work, a
similar 8OA/IEPOX would also suggest that kNH+

4
� kH+ if

the observed rate coefficien for Reaction (2) is define as
kobs = kAH · [AH]. Eddingsaas et al. (2010) estimated kH+ ∼

5 × 10−2 M−1 s−1 and Cole-Filipiak et al. (2010) determined
kH+ = 3.6 × 10−2 M−1 s−1 for IEPOX.

www.atmos-chem-phys.net/14/3497/2014/ Atmos. Chem. Phys., 14, 3497–3510, 2014
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3.2 Molecular picture of OA formation from IEPOX

3.2.1 Cation and anion substitutions

To further investigate the role of NH+

4 in IEPOX ring-
opening reactions at near-neutral conditions, NH+

4 was re-
placed by a cation that cannot act as a proton donor (Na+).
As isomer structure appears to be unimportant for uptake,
only the trans isomer was used for this portion of the study.
Further, many nucleophiles present in the atmosphere are
known to add to the protonated epoxide to give the beta-
hydroxy ring-opening product, for example: H2O (Solomons
and Fryhle, 2004), SO2−

4 ions (Cavdar and Saracoglu, 2009),
NH3 or amines (Clayden et al., 2001), and halide ions (Clay-
den et al., 2001). Thus, SO2−

4 was substituted by Cl− to study
the anion (or nucleophile) effect.

Hydrated particles of AS ((NH4)2SO4), sodium sulfate
(Na2SO4), ammonium chloride (NH4Cl), and sodium chlo-
ride (NaCl) were introduced into the chamber in separate ex-
periments, followed by the introduction of trans β-IEPOX.
The mixtures were allowed to equilibrate for 3.5–6 h. The RH
range for these reactions is 60–85 %, chosen at a point well
above their respective eff orescence RH (Martin, 2000), so
that each seed would contain a considerable fraction of liquid
water. The particle size distributions for each seed type were
polydisperse and unimodal, with hydrated mobility diame-
ters in the range of 15–600 nm and with 60–120 nm peak di-
ameters. It is expected that the hydrated particles were spher-
ical. The size-dependent hygroscopicities of AS and NaCl
are well-studied, however, the calculations of liquid water
content for other seed types are subject to error based on the
method we described due to limited literature data. There-
fore, we opt to present results based only on the COA/CIEPOX
for the comparison of inorganic seed compositions.

OA formation after particle drying, as detected by ToF-
AMS, is negligible for both sodium salts (NaCl and
Na2SO4). The OA mass did not grow in response to the ad-
dition of IEPOX for the Na+-based particles (Fig. S4). Fig-
ure 4 shows the average stabilized ratios of OA formed with
respect to trans β-IEPOX injected for the four inorganic salts
used in this work. The atomizer solution pH for Na+-based
seeds was also ∼5.5, a typical pH for a water solution in equi-
librium with CO2 (Reuss, 1977). The large difference in re-
activity of IEPOX on Na2SO4 vs. (NH4)2SO4 seeds may be
attributed primarily to NH+

4 activity, although there will be
some differences in [H+] for the NH+

4 -based and Na+-based
seeds due to the slight dissociation of NH+

4 � NH3. Addi-
tionally, in light of the weak pH dependence for AS solutions,
it appears likely that NH+

4 activity is an important factor in
suppressing OA formation on Na2SO4 seed particles. The re-
sults show that equilibrium partitioning of IEPOX, i.e., any
condensed-phase mass formed from unreacted IEPOX, onto
salty solutions is not competitive with reactive partitioning
for OA formation.

 
 

 

   

 

 

  Fig. 4. Ratio of organic aerosol produced to gas-phase trans β-
IEPOX injected for seeds of various compositions (RH 60–85 %).

For the ammonium salts, NH4Cl produced an order of
magnitude lower mean COA/CIEPOX ratio than (NH4)2SO4,
after an approximate 2h delay (Fig. S4). The modeled pH,
using E-AIM, for both ammonium salt systems is similar
(pH ∼4–4.5), and thus, the difference in reactivity may be
attributed to the nucleophilic activity of Cl− compared to
SO2−

4 . Interestingly, Minerath et al. (2009) showed that acid-
catalyzed ring-opening products of an epoxide with Cl− may
be more efficien than SO2−

4 . In that study, sulfuric acid was
added to the NaCl + epoxide aqueous solution, which pro-
vide sulfate and bisulfate ions to the solution. Therefore,
the results may not be directly comparable to this work.
If Cl− can be a good nucleophile in aqueous solutions of
IEPOX when coupled with NH+

4 catalysis, we may expect
to observe organochloride products. There was no evidence
of organochloride-derived accurate mass fragments in ToF-
AMS data for the NH4Cl reactive uptake organics. Further,
gas-phase organochlorides were not observed by the CIMS.
It is possible that organochlorides are produced but are eas-
ily hydrolyzed in the aerosol liquid water due to the rela-
tively good leaving group ability of Cl−, i.e., the hydrolysis
behavior of organochlorides is more similar to that of ter-
tiary organonitrates than that of organosulfates (Darer et al.,
2011). It is also possible that organochlorides are preferen-
tially evaporated in the diffusion drier because they might be
more volatile than organosulfates or polyols. In both situa-
tions, but more so the latter, the total organic mass from the
NH4Cl experiments would be underestimated by ToF-AMS.
Although we did not quantify tetrols and other polyols in
this work, it is expected that they are present in substantial
quantities because they are the thermodynamically preferred
products in the epoxide ring-opening reactions.
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3.2.2 Henry’s Law constant

Although ToF-AMS did not observe OA formation for ex-
periments using sodium salts (NaCl and Na2SO4) after par-
ticle drying, the wall-loss-corrected SMPS data (not dried)
showed a minor and stable change in particle volume upon
injection of IEPOX into the chamber with hydrated NaCl or
Na2SO4 seeds (Fig. S5a, shown for NaCl). It is likely that
the dissolved but unreacted IEPOX was removed from the
condensed phase upon particle drying, which would lead to
no observed OA mass in the ToF-AMS data throughout the
duration of the experiment. The reversibility OA formation
on the hydrated seeds indicates equilibrium-partitioning of
IEPOX into the aerosol liquid water. The ratio of dissolved
OA to injected IEPOX (Fig. S5b) reached a steady-state
value at the end of the IEPOX injection period. Because NH+

4
is not present, and [H+] is not expected to be considerable in
the aqueous phase, Reactions (R2) and (R4) are unimportant
for this system. Further, in experiments using NaCl seeds,
where the nucleophilicity of the solution is weaker, we are
able to neglect the contribution of Reaction (R3), thereby iso-
lating the equilibrium partitioning of IEPOX (Reaction R1).

We estimate the Henry’s Law coefficien (KH) for the
equilibrium partitioning of IEPOX into a briny liquid
(NaCl ∼9 M ionic strength) representative of atmospheric
aerosol to be 3 × 107 (−50 / +100 %) M atm−1. The KH
in a solution of NaCl may be different than the value
in pure water, due to complex aqueous interactions of
Cl− and Na+ with water-soluble organics. As an ex-
ample, the Henry’s Law constant for glyoxal was mea-
sured to be KH = (4.19 ± 0.87) × 105 M atm−1 in pure wa-
ter, 1.90 × 106 M atm−1 in a 0.05 M NaCl solution, and
8.50 × 105 M atm−1 in a 4.0 M NaCl solution at 298 K (Ip
et al., 2009). Ip et al. (2009) attributed the increase in KH
for NaCl solutions at low ionic strengths (compared to wa-
ter) to hydrogen bonding interactions of Cl− and OH groups
and the decrease at high ionic strength to a “salting-out”
effect. The KH value for IEPOX has not been experimen-
tally determined in the past; however, the range of KH has
been estimated using the HENRYWIN model (EPA, 2008)
by several studies. For example, Eddingsaas et al. (2010) es-
timated KH = 2.7 × 106 M atm−1 using a bond contribution
method, and KH = 2.9 × 1010 M atm−1 using a group contri-
bution method in version 4.0 of the model. The empirical
KH value reported here is within range of both estimations
– closer to the bond contribution method estimate. These re-
sults provide a critical constraint in the partitioning coeffi
cient, significantl decreasing the error associated with using
KH in a quantitative manner (from 4 orders of magnitude to
a factor of two).

3.2.3 Organic composition

A full analysis of the OA composition is outside the scope of
this work. The reader is referred elsewhere for a discussion

 
 

  

 

 

  
Fig. 5. ToF-AMS normalized difference spectra (composition at
peak OA growth minus composition during seed injection), show-
ing the organic composition of the OA produced by reactive uptake
of the trans and cis isomers. Select nominal mass ions previously
suggested to be IEPOX-derived OA tracers are labeled.

of the formation of oxygenated hydrocarbons, for example,
tetrols and alkenetriols and organosulfates in the aqueous re-
action of IEPOX catalyzed by acidic sulfate (Eddingsaas et
al., 2010, Surratt et al., 2010). Although strong acid is absent
in the systems studied in this work, we observe many similar-
ities in the IEPOX-derived OA composition compared to the
existing chamber and fiel results. For example, organosul-
fate products are abundant when hydrated AS seeds are used.
The dominant ion observed in negative ion mode UPLC/ESI-
ToFMS for AS uptake was C5H11SO−

7 (Fig. S6), correspond-
ing to the ring-opening trihydroxy organosulfate product of
IEPOX. Derivatization was not performed in this work to de-
tect tetrols. Organosulfate fragments were also observed in
ToF-AMS (CSO family of fragments, not shown).

IEPOX-derived OA formed under near-neutral conditions
in this work have ToF-AMS spectra similar to those of OA
observed in the field The suggested tracers for IEPOX-
derived organics, m/z 53 (mostly C4H+

5 ) and m/z 82 (mostly
C5H6O+) (Lin et al., 2012, Robinson et al., 2011, Bud-
isulistiorini et al., 2013), were observed in uptake experi-
ments using both isomers. These mass fragments were pro-
posed to originate from the electron-impact (EI) ionization
of furan-derived molecules that were suggested to be formed
from the acid-catalyzed rearrangement of IEPOX (Lin et
al., 2013). Although mass fragments produced by EI may
have multiple sources, in the pure system used in this study,
m/z 82 was found to be a good tracer for IEPOX-derived
OA. Figure 5 shows the difference between mass spectra
at the end of the experiment and those at the time period
prior to organic injection, corresponding to the organic frac-
tion of the OA formed from the uptake of both isomers.
The spectral ion distributions are very similar to each other
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Fig. 6. ToF-AMS difference spectra (open minus closed chopper) showing organic nitrogen (amine) fragments from the reactive uptake of
trans β-IEPOX onto AS vs. Na2SO4 seeds. Similar fragments were observed for cis β-IEPOX using NH+

4 -based seeds and not observed in
Na+-based seeds.

and m/z 53 and m/z 82 constituted a substantial fraction
of the total ion intensity. The ion abundance of tracer frag-
ments increased in accordance with the growth of OA mass
(Fig. S7). As m/z 53 (C4H+

5 ) is a reduced fragment, it is
also linked to hydrocarbon-like organics in chamber studies
and may not be unique to IEPOX-derived OA. m/z 53 was
observed in all experiments, including those that used Na+-
based seeds. However, m/z 82 is abundant only when NH+

4 -
based seeds were used, supporting the suggestion that it can
be formed though the EI fragmentation of an IEPOX-derived
ring-opening product in ToF-AMS.

A unique aspect of the NH+

4 -catalyzed ring-opening reac-
tion of IEPOX is the minor possibility of nucleophilic addi-
tion by NH3, instead of reforming NH+

4 after neutralizing the
addition of another nucleophile. Figure 6 shows ion peaks for
organic fragments containing C-N bonds observed in ToF-
AMS data from the uptake of trans β-IEPOX onto AS vs.
Na2SO4 seeds. The same C-N fragments were observed in
cis β-IEPOX experiments using AS. These C-N fragments
were not initially present in the AS seeds, and grow linearly
following the introduction of IEPOX. Individual C-N frag-
ments correlate well (Fig. S8, linear fi R2 = 0.69–0.88) with
the m/z 82 IEPOX-derived OA tracer fragment (C5H6O+),
suggesting that the reaction of IEPOX is responsible for the
presence of these amines. Comparatively, C-N type frag-
ments were negligible or non-existent in uptake experiments
from Na+-based seeds. The identificatio of amines is tenta-
tive; however, to the best of our knowledge, this is the firs
suggestion of amine formation from IEPOX. As organic ni-
trogen compounds also give rise to non-nitrogenous mass
fragments in ToF-AMS, it is not possible to estimate a mass
concentration for the amines in this work. However, the C-
N family of fragments comprised approximately 10 % of the

C5H6O+ signal, an indication that amine formation may not
be negligible. The formation of organic nitrogen from the
IEPOX + NH+

4 reaction has important implications in the
atmosphere as the ring-opening reaction of epoxides with
amines should be more efficien than with NH3 (Azizi and
Saidi, 2005). Further investigations may provide more in-
sight on the source of organic nitrogen from the atmospheric
reactions of epoxides.

4 Summary and atmospheric implications

It was demonstrated here that the conversion of IEPOX to or-
ganic aerosol (OA) depends on the coupled relationship be-
tween the inorganic composition and liquid water content of
the particle (PLWC). The inorganic composition governs the
catalyst and nucleophile characteristics, and PLWC provides
a reaction medium for the partitioning of IEPOX and con-
trols the activities of all the aqueous components. The weak
dependence on pH and the strong dependence on nucleophile
activity and particle liquid water suggest that the IEPOX re-
actions in hydrated ammonium salts are nucleophile-limited,
rather than catalyst-limited.

We showed that the equilibrium partitioning (Reaction
1) and the rate-limiting step of IEPOX activation (Reac-
tion 2) do not proceed in the absence of liquid water; how-
ever, increasing the pure water content does not necessar-
ily increase the reactive partitioning coefficien due to vari-
ous dilution effects. When the inorganic particle is hydrated,
the OA conversion is then determined by the catalyst and
nucleophile activities. The rate of OA formation incorpo-
rates both Reactions (R2) and (R3), as illustrated by the
cation and anion substitution case studies. In the hydrated
Na2SO4 experiment, there was high activity of a relatively
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of amines (Azizi and Saidi, 2005) or even hot water (60 ◦C)
(Wang et al., 2008). The nucleophiles for these reactions may
be water, amines or ammonia, thiols, sulfate ions, nitrate ion,
halide ions, carboxylic acids, and alcohols (Iranpoor et al.,
1996, Jacobsen et al., 1997, Clayden et al., 2001). Because
of the diversity in the composition of atmospheric aerosols
and fog/cloud droplets (Graedel and Weschler, 1981), the dis-
tribution of IEPOX-derived products in nature may be more
complex and varied than currently believed.

Supplementary material related to this article is
available online at http://www.atmos-chem-phys.net/14/
3497/2014/acp-14-3497-2014-supplement.pdf.
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