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Abstract

Using a mechanism design approach, we consider a firm’s optimal pricing policy when consumers are 
heterogeneous and learn their valuations at different times. We show that by offering a menu of advance-
purchase contracts that differ in when, and for how much, the product can be returned, a firm can more 
easily price discriminate between privately-informed consumers. In particular, we show that screening on 
when the return option can be exercised increases firm profits, relative to screening on the size of the refund 
alone, only if the expected gains from trade are higher for consumers who learn later. We show that in some 
settings (mean-preserving spread) the firm can achieve the complete-information profits and analyze the 
optimal contract in other settings (first-order stochastic dominance) in which the first-best allocation is not 
always feasible.
© 2015 Elsevier Inc. All rights reserved.

✩ We would like to thank Johannes Hörner, Hao Li, Larry Samuelson and Kathryn Spier, as well as the editor, 
Alessandro Pavan, an anonymous associate editor, and two referees, for very helpful comments and suggestions on 
earlier versions of the paper. Thanks also go to seminar participants at Carnegie Mellon University, Columbia University, 
Duke University, INSEAD, New York University, Northwestern University, Stanford University, University of Maryland, 
University of Rochester, University of Southern California, University of Texas at Austin, University of Toronto, 
Washington University in St. Louis, Wharton, and Yale University, as well as to participants at the Econometric Society 
Summer Meetings and the INFORMS Revenue Management and Pricing Conference. We also thank the National Science 
Foundation (CMMI 1351821 and CMMI 1334194), Booth School of Business, University of Chicago, Carnegie Mellon 
University, the Kellogg School of Management, Harvard Business School, and Northeastern University for their financial 
support.

* Corresponding author.
E-mail addresses: akan@andrew.cmu.edu (M. Akan), baris.ata@chicagobooth.edu (B. Ata), j.dana@neu.edu

(J.D. Dana).
http://dx.doi.org/10.1016/j.jet.2015.07.016
0022-0531/© 2015 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jet.2015.07.016
http://www.elsevier.com/locate/jet
mailto:akan@andrew.cmu.edu
mailto:baris.ata@chicagobooth.edu
mailto:j.dana@neu.edu
http://dx.doi.org/10.1016/j.jet.2015.07.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jet.2015.07.016&domain=pdf


M. Akan et al. / Journal of Economic Theory 159 (2015) 728–774 729
JEL classification: D82; D4; D42; D47

Keywords: Price discrimination; Revenue management; Dynamic pricing; Intertemporal price discrimination; Dynamic 
mechanism design

This paper analyzes an optimal advance-purchase pricing, or revenue-management, problem 
when consumers learn their valuations for future consumption over time. We assume that each 
consumer begins with private information about both the distribution of her valuation and the 
time when she will learn her valuation. Later, once she has learned her valuation, she also has 
private information about the realization of her valuation. For ease of analysis, we assume that 
each consumer’s type, or initial private information, is the time that she will learn her valua-
tion, and that the distribution of each consumer’s valuation is a function of her type. In this way, 
consumers begin with private information about two characteristics, the distribution of their val-
uations and the time that they will learn their valuation, but their initial private information can 
be represented as a single dimension of information.

We formulate the firm’s optimal pricing problem as a dynamic mechanism design problem. 
The firm maximizes its profit over the set of dynamically incentive-compatible direct-revelation 
mechanisms when the firm knows only the ex ante distribution of consumers’ private information. 
We characterize the optimal direct-revelation mechanism and show that the firm can implement 
the optimal mechanism with a menu of contracts with different prices and different refund terms, 
including both the size of the refund available and the time at which the refund option can be 
exercised. Such pricing strategies are widely used by airlines, hotels, and railroads, as well as a 
variety of other firms in the retail, transportation and event industries.

The main contribution of the paper is to demonstrate that time can be a powerful screening 
device when consumers learn their valuations at different times and their valuations are correlated 
with when they learn. By explicitly assuming consumers learn at different times, we are adding 
additional periods (a continuum of periods since we assume a continuum of consumer types) 
to the sequential screening model analyzed by Courty and Li (2000). While the information 
consumers have before learning and after learning is the same as in Courty and Li (2000), the 
existence of these additional reporting periods creates an additional screening device which the 
firm can potentially use to earn significantly higher profits and even, in some cases, to implement 
the first best.

While Courty and Li (2000) focus on screening on the size of the refund that consumers 
receive in a model in which consumers learn their valuations (and make their return decisions) 
at the same time, we assume consumers learn their valuations at different times and then allow 
the firm to screen on both the size of the refund and when the refund option can be exercised. 
Intuitively, screening on when the refund can be exercised allows the firm to costlessly satisfy 
all of its “downward” local incentive compatibility constraints. No consumer wants to report that 
she will learn her valuation just before she actually does, because doing so will require her to 
report her valuation before she learns it and hence to forgo the option value of returning the good 
if her valuation is low – a positive discrete cost. Because screening on when the refund option 
can be exercised may relax incentive constraints, it has the potential to increase profits, but only 
if those relaxed incentive constraints were binding. We show that profits may increase, and may 
even increase all the way to the complete-information profits, but that profits may also be the 
unchanged (relative to a model in which consumers learn their valuations simultaneously).
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We first consider conditions under which the firm can implement the first best. These are 
settings in which the expected gains from trade are higher for consumers who learn later, so if 
the firm offered a menu of the complete information contracts then consumers who learn later 
would all imitate the consumer who learns the earliest – “downwards” incentive compatibility 
constraints bind. The firm would like to relax these constraints by screening on when the return is 
exercised. These are also settings in which the value of the option to return the good is sufficiently 
high.

When a consumer who learns late imitates a consumer who learns early, she forgoes the option 
to return the good if she subsequently learns her valuation is low (because the return option 
expires before she learns her valuation). If this forgone option value is greater than the difference 
in the two types’ expected gains from trade, then the firm can extract all of the expected gains 
from trade from consumers. We show that one setting that satisfies these two conditions is when 
consumers who learn later have a distribution of valuations that is a mean-preserving spread of 
the distribution of valuations of consumers who learn earlier.

We then consider conditions under which screening on when consumers can exercise the 
return option has no added value. These are settings in which the expected gains from trade 
are decreasing. So if the firm offered a menu of the complete-information contracts, then all 
consumers would imitate the consumer who learns the latest. In these settings, screening on 
when the return option can be exercised has no value. The firm is unable to exploit the fact that 
some customers learn their valuations later because these are not the consumers to whom it would 
like to set a higher price.

Finally, we consider conditions under which screening on when consumers can exercise the 
return option increases profits but does not implement the first best. These are settings in which 
the expected gains from trade are higher for consumers who learn later, but the value of the return 
option is not high enough to deter consumers who learn late from imitating consumers who learn 
early. We show that in these settings the firm will screen both on the size of the refund and on the 
time when it can be exercised.

For comparison to Courty and Li (2000) we emphasize two cases that exhibit increasing ex-
pected gains from trade, mean preserving spread (MPS) and first-order stochastic dominance 
(FOSD). However, in contrast to Courty and Li (2000), our consumers are ordered by when they 
learn, not just by their distributions. So we differentiate between Forward MPS (consumers who 
learn late have a distribution of valuations that is a mean-preserving spread of the distributions 
of consumers who learn early) and Reverse MPS (consumers who learn early have a distribution 
of valuations that is a mean-preserving spread of the distributions of consumers who learn late); 
and we differentiate between Forward FOSD (consumers who learn late have a distribution of 
valuations that first-order stochastic dominates the distributions of consumers who learn early) 
and Reverse FOSD (consumers who learn early have a distribution of valuations that first-order 
stochastic dominates the distributions of consumers who learn late). Both Forward MPS and For-
ward FOSD exhibit increasing expected gains from trade, while both Reverse MPS and Reverse 
FOSD exhibit decreasing expected gains from trade. We find that the firm can extract the entire 
surplus in the Forward MPS case – the option value a consumer forgoes by purchasing before 
they know their valuation is always greater than the difference in expected gains from trade (the 
difference in the complete information prices). We also find that the firm earns higher profits, but 
may not be able to extract the entire surplus, in the Forward FOSD case. Finally, we find that in 
the Reverse MPS and the Reverse FOSD cases screening on when the return option is exercised 
has no effect on profits.
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We characterize the optimal contract under Forward FOSD when the complete-information 
allocations are not feasible and show that the firm still offers a menu of expiring refund con-
tracts, but offers lower-valuation, early-learning consumers contracts with a higher refund price 
(a downward distortion in allocation) and offers higher-valuation, later-learning consumers con-
tracts with a lower refund price (an upward distortion in allocation). The distortion for consumers 
who learn early deters imitation by consumers who learn late. This is the same distortion as 
in Courty and Li (2000), but it in our model only the very highest type consumer is indiffer-
ent between reporting truthfully and imitating consumers who learn early, and the only binding 
“downwards” incentive-compatibility constraints are global constraints. This distortion increases 
what consumers who learn early are willing to pay because they are getting a more attractive re-
fund option, but the highest type will never exercise the refund option if she imitates another 
consumer because she won’t yet know her valuation. The lower return price (upward distortion 
in allocation) for consumers who learn late deters imitation by consumers who learn earlier (but 
not very early). This is a binding “upward” local incentive-compatibility constraint that does 
not exist in Courty and Li (2000) and other settings. The distortion is profitable because the 
downward global incentive-compatibility constraints don’t bind for these consumers, but these 
consumers are attracted to the rents captured by the very highest type. And the distortion is ef-
fective because these consumers are also less willing to pay up front for the increased chance of 
being allocated the good, so the distortion reduces the rents captured by these consumers.

Advance-purchase tickets with expiring refund options (or exchange options) are commonly 
sold by airlines, hotels, theaters and railroads. The US passenger service railroad, Amtrak, has 
a 90% of purchase price cancellation policy for tickets purchased at list price, but also offers 
lower promotional discount fares which are non-refundable and must be purchased 14 days in 
advance. Carnival Cruise Line’s list prices for its products are 50% refundable between 30 and 
45 days prior to departure, 25% refundable between 15 and 29 days prior to departure, and non-
refundable within 14 days of departure, but tickets purchased through its Early Saver Program 
are up to 20% less expensive but are non-refundable from the date of purchase and are typically 
only offered more than 90 days before departure. In the US, several hotels, including Marriott, 
Hilton, Sheraton, and Westin, offer 21-day advance-purchase discounts that are non-refundable, 
but most other reservations at these hotels can be canceled prior to 1 day prior to arrival for a full 
refund. And almost all airlines offer both fully refundable and non-refundable fares. For exam-
ple, Southwest Airlines offers both fully refundable “Business Select” and “Anytime” fares with 
no advance-purchase requirement and significantly lower-priced, non-refundable, “Wanna Get 
Away” fares with an advance-purchase requirement (the industry typically uses 7-day, 14-day, 
and 21-day advance purchase requirements). And finally, Disney charges a cancellation fee of 
$200 for cancellations 6 or more days before arrival and offers no refund for cancellations 5 
or fewer days before arrival. Disney also offers bundled discount packages with less generous 
cancellation policies. These examples illustrate that many firms sell their product at a discount 
to consumers who accept contracts with no return option or with a return option which expires 
early.1

The paper is organized as follows. Section 1 gives a numerical example that demonstrates that 
screening on when the return option can be exercised increases firm profits. Section 2 briefly re-
views the related literature. Section 3 presents the general model and introduces the mechanism 

1 Partially-refundable, or equivalently options, contracts are also used by distributors and very large buyers to purchase 
electric power. These contracts reduce the risk faced by the buyers, but also may enable electricity suppliers with local 
market power to extract more surplus from buyers.
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design problem. Section 4 presents necessary and sufficient conditions for the first-best solution 
to be feasible, that is, for screening on when the return option can be exercised to earn the com-
plete information profits, and demonstrates that the first-best is achieved when the distributions 
satisfy Forward MPS. Section 5 presents sufficient conditions under which screening on when 
the return option can be exercised is not useful, which includes both Reverse MPS and Reverse 
FOSD. In these cases, the optimal mechanism is the equivalent to the optimal mechanism in a 
model in which consumers learn simultaneously (i.e., Courty and Li, 2000). Finally, in Section 6, 
we derive the optimal mechanism in an interesting case in which screening on when the return 
option can be exercised is a useful screening device, but the first best is not feasible. That is, when 
the distributions satisfy Forward FOSD but the option value is insufficient. Section 7 discusses 
potential extensions of the model and offers some concluding remarks.

1. A numerical example

A numerical example illustrates how a firm can use both the size and the timing of its refund 
offers to increase its profits. Suppose that there are two types of consumers who know the distri-
bution of their valuations, but don’t initially know the realization of those distributions. Type 1 
consumers learn early, at time t1, and type 2 consumers learn late, at time t2, where t2 > t1. 
Assume that a type 1 consumer’s valuation is v1 = 120 with probability 1/4 and is v1 = 0 with 
probability 3/4, and assume that a type 2 consumer’s valuation is v2 = 180 with probability 1/2
and is v2 = 0 with probability 1/2. Also, suppose that the firm’s unit cost is c = 100 so that 
it is efficient for consumers to consume the good whenever their valuations are high.2 Finally, 
suppose the firm sells in advance, before any consumers learn their valuations.

If consumers’ types were common knowledge, then the firm could design a different contract 
for each type. The firm wants to create incentives for efficient ex post consumption while ex-
tracting all of the ex ante surplus. One obvious way to do this is to sell the good with an option 
to return it later (anytime after she consumer learn her valuation) if the realized valuation is low. 
To insure ex post efficient allocation, the firm could set the return price for both types equal to 
its unit cost, r1 = r2 = 100 (this is not the unique value of the return price in this example), and 
in order to extract all the surplus the firm would charge type 1 consumers an up-front payment of 
105 (equal to E[max {v1, r1}]) and charge type 2 consumers an up-front payment of 140 (equal 
to E[max {v2, r2}]). The expected profit is E[max {v1 − c,0}] = 5 for each type 1 consumer, and 
E[max {v2 − c,0}] = 40 for each type 2 consumer.

Now consider what happens when the firm offers this menu of contracts to privately-informed 
consumers. Clearly the contracts are not incentive compatible. Both consumer types prefer the 
contract offered to the type 1 consumers, so both pay a price of 105. Type 1 consumers get a 
surplus of 0 and type 2 consumers get an expected surplus of 35 (equal to 1/2 × 180 + 1/2 ×
100 − 105). The firm earns a profit of 5 for each type 1 and 5 for each type 2 consumer. However 
the firm can do better.

The firm has two instruments with which it can screen the type 2 consumers. First, the firm 
offers a higher refund to type 1 consumers. This discourages type 2 consumers from purchas-
ing the contract designed for type 1 consumers because the higher refund is associated with a 

2 In our two-type example, changing refunds need not lead to inefficient ex post allocations, so there may be a variety of 
refund values which yield the same profits, but in our general model valuations are drawn from a continuous distribution, 
so refunds that are not equal to cost lead to allocation distortions, and the profit-maximizing contracts are unique.
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larger upfront payment, and type 2 consumers value the return option less than type 1 consumers 
because they use it less frequently.

Specifically, the firm can increase the size of the refund for type 1 consumers to r1 = 120. By 
increasing the refund for type 1 consumers to 120, it can increase the price charged to type 1 to 
p1 = 120 (equal to 1/4 × 120 + 3/4 × 120). Even though the price is higher, profits from each 
type 1 consumer are still 5 because the refund is also higher (and the increase does not cause a 
distortion in allocation to type 1 as long as the refund is less than 120 because we have assumed a 
binary distribution for v1). type 2 consumers get a surplus of 30 from type 1’s contract, so the firm 
can offer a refund of r2 = 100 and a price of p2 = 110 (equal to 1/2 × 180 + 1/2 × 100 − 30) to 
type 2 consumers (note that a change in the refund offered to the type 2 consumers has no effect 
on profits). In this way the firm can increase its profit from 5 to 10 for each type 2 consumer.

Screening in this way on the size of the refund, as originally analyzed by Courty and Li
(2000), increases the firm’s profits but does not implement the complete-information outcome – 
the first-best profit is 5 for each type 1 consumer and 40 for each type 2 consumer. But if t2 > t1, 
the firm can do even better because it now has a second instrument. The firm can also set an ex-
piration time for the refund offers made to type 1 consumers. This discourages type 2 consumers 
from purchasing the contract designed for type 1 consumers because type 2 consumers won’t 
know their valuations when they must choose whether to accept the refund. In this example, the 
complete information contracts can be modified to make them incentive compatible. The firm 
simply needs to specify that the return option offered to type 1 consumers must be exercised 
before time t2, that is, before type 2 consumers learn their valuations.

However, notice that if t2 ≤ t1, then screening on when the return option is exercised has no 
effect. The best the firm can do is screen on the size of the refund. So screening on when the 
return can be exercised is profitable when consumers who learn late want to imitate consumers 
who learn early.

Finally, notice that if type 2 has valuation v2 = 180 with probability 4/5 instead of 1/2, 
then the firm finds it profitable to use both screening instruments. In particular, the complete 
information contracts are p1 = 105 and r1 = 100 for type 1 and p2 = 164 and r2 = 100 for 
type 2, but now the type 2 consumer gets a surplus of 59 from type 1’s complete information 
contract (4/5 × 180 + 1/5 × 100 − 105); the type 2 consumer gets a surplus of 48 from the 
contract p1 = 120 and r1 = 120 (4/5 × 180 + 1/5 × 120 − 120); and the type 2 consumer gets 
a surplus of 24 from the contract p1 = 120 and r1 = 120 if the firm also screens on when the 
return option can be exercised (4/5 × 180 + 1/5 × 0 − 120). So the contract offered to the type 
2 consumer is p2 = 140 and r2 = 100, for a surplus of 24, and the firm’s profit is highest when 
both instruments are used together.

This numerical example illustrates that there are two potential elements of the firm’s optimal 
screening strategy. First, the firm increases the price of the ticket sold to type 1 consumers by 
increasing the size of the refund which increases the option value and increases type 1 consumers’ 
willingness to pay. And second, the firm sets an expiration date for the return option offered to 
type 1 consumers. The expiration date is before type 2 consumers learn their valuations so that 
the type 2 consumers can’t imitate the type 1 consumers without paying for a return option that 
they never use.

While the numerical example illustrates the value of screening on when the refund option can 
be exercised, it is restrictive in several important ways. First, the assumption that each consumer’s 
valuation is drawn from a discrete distribution implies that at least some changes in the return 
price do not change or distort ex post consumption decisions. In the paper, we analyze a model 
with much more general valuation distributions in which changes in the refund price are always 
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distortionary. Second, the assumption that there are only two consumer types oversimplifies the 
firm’s problem. Instead, we analyze a model with a continuum of consumers learning in sequence 
and identify additional issues that aren’t evident in a two-type model. In particular, we show that 
the binding incentive constraints are not just the constraints preventing consumers from imitating 
other consumers who learn earlier. When consumers who learn late capture information rents to 
prevent them from imitating consumers who learn early, consumers who learn at intermediate 
times may find it more attractive to imitate consumers who learn later than those that learn earlier.

Astute readers may also have noticed that instead of offering a menu of refundable tickets 
ex ante, the firm could also implement the first best by offering a sequence of ex post contracts 
and literally screening on when the product is purchased. The firm could instead offer type 1 
consumers a non-refundable contract for 120 that they purchase at time t1, after they have learned 
their valuations, but before type 2 consumers have learned their valuations, and offer type 2 
consumers a non-refundable contract for 180 that they purchase at time t2, after they have learned 
their valuations. These prices are incentive compatible. And this implementation fits the pricing 
practices in our hotel, airline and railroad examples quite well. Type 1 consumers represent tourist 
or leisure travelers, and these consumers purchase at a lower price early, but after they learn their 
valuations are high. Type 2 consumers represent business travelers who purchase at a higher 
price late, and only if their valuations are high. But extracting the entire surplus with these ex 
post spot prices is only feasible because of the binary distribution assumption in our numerical 
example (see Ata and Dana, forthcoming for a more general analysis of optimal pricing under 
this assumption).

Finally, the most astute readers may have noticed that in our numerical example the firm can 
also implement the first best without screening on when the return can be exercise by waiting until 
after type 1 has learned her valuation to offer the menu of contracts. This is a consequence of 
the fact that in the example there are only two types and that type 1 consumers are homogeneous 
conditional on having a valuation greater than c. Simply increasing the number of types to three 
would prevent this strategy from implementing the first best without screening on when the 
option is exercised. And screening on when the option is exercised is essential to getting the full 
information profits in the general model.

2. Related literature

We begin by discussing three different closely-related literatures: the literature on advance-
purchase pricing when consumers learn over time, the operations management literature on 
pricing and capacity controls in stochastic environments, and the dynamic mechanism design 
literature on optimal pricing when consumers learn over time.

The literature on advance-purchase pricing has largely focused on two-period models, that 
is, one period before consumers learn their demands and one period after. With the exception 
of Courty and Li (2000), discussed below, this literature also assumes that purchases are not 
refundable. Courty (2003) considers a monopolist that can commit in advance to its prices and 
that chooses whether to sell to consumers before (advance sales) or after (spot market sales) 
they have learned their demand. Courty (2003) shows that ex ante sales reduce profits because 
they lead to inefficient allocation (over consumption or under consumption), but can increase 
profits for a monopolist when consumers are more homogeneous ex ante so the dead weight 
loss of the monopoly pricing distortions is reduced. DeGraba (1995) considers a monopolist that 
is unable to commit to its future prices and that intentionally creates a capacity shortage and 
hence a buying frenzy in the spot market that induces buyers to purchase early, before they know 
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their valuations. Dana (1998) considers a competitive model in which heterogeneous consumers 
divide their purchases between advanced sales, when they may not yet know their demands, and 
spot market sales, after their valuations have been realized. Gale and Holmes (1993) considers 
a related model in which a monopolist that sells to heterogeneous consumers discriminates by 
selling to some consumers early before they know their departure-time preferences and selling to 
other consumers late after they learn their preferences.3 Probably the most closely related paper 
in this literature is Nocke et al. (2011). Like us they emphasize the use of advance sales as a 
screening mechanism in a model with full commitment and no aggregate demand uncertainty or 
capacity constraints, but in their model, consumers vary in how much information they have in 
advance, not in when they learn their valuations.4

Che (1996) is the first paper to explicitly consider the optimal use of refunds (or returns) when 
consumers learn about their valuations after making their purchase decisions. Che (1996) finds 
firms are more likely to offer refunds when costs are high and when consumers are risk averse, 
though Che (1996) restricts attention to nonrefundable or fully refundable sales.

A few papers have considered partially refundable ticket sales when consumers learn over 
time.5 The most closely related paper is Courty and Li (2000) (see also Ringbom and Shy, 2004). 
In Courty and Li (2000), the firm screens consumers on the size of the refund, but not on when 
consumers can claim the refund. As in our model, consumers make their purchases before they 
learn their valuations, but retain an option to cancel and claim a partial refund after they learn 
their valuations. These refund contracts increase firm profits in two ways. First, they allow the 
firm to extract more total surplus from consumers, even when consumers are homogenous. And 
second, because the firm can vary the size of the refund, they allow the firm to better discriminate 
between heterogeneous consumers.6

Historically, the operations management literature on advance-purchase sales has considered 
both optimal pricing and capacity controls when heterogeneous consumers purchase in an ex-
ogenously given, sequential order. Littlewood (1972) considers a setting in which the consumers 
have either high or low valuations, which are known and observable. Consumers with low val-
uations arrive in the first period, while the consumers with high valuations arrive in the second 
period. There is aggregate uncertainty about the number of consumers of each type, and a sys-
tem manager chooses how much capacity to reserve for the consumers with high valuations. 
Littlewood (1972) characterizes the optimal policy as a booking limit policy. Brumelle and 
McGill (1993) and Curry (1990) provide extensions of Littlewood’s result to n customer classes, 
characterizing the optimal capacity control policy by nested booking limits. Talluri and van Ryzin
(2004) provides an extensive review of these papers and many other extensions of these capacity 
control models in the operations management literature.

3 See also Möller and Watanabe (2010) and Gale and Holmes (1992).
4 Nocke et al. (2011) also make the restrictive assumption that consumers’ valuation distributions are binary. Because 

of this assumption, and the way that they model consumer heterogeneity, as in Ata and Dana (forthcoming), the optimal 
mechanism can always be implemented without selling refundable tickets.

5 In the absence of risk aversion, by setting the refund price equal to its cost, the firm is assuring that the consumer’s 
consumption decision is ex post efficient and allowing itself to extract all of the consumer surplus through an ex ante 
lump sum payment, so the optimality of partial refunds is a direct implication of the principal-agent literature on ex ante 
contracting when the agent is ex post privately informed.

6 A few papers in the economics literature have looked at consumer learning and refund contracts empirically. In 
particular, Escobari and Jindapon (2008) show that the difference between the advance-purchase price of a refundable 
airline ticket and the advance purchase price of a non-refundable airline ticket declines over time, which is consistent 
with consumers learning about their valuations over time.
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Gallego and Şahin (2010) and other more recent papers in the operations management liter-
ature, model consumers as forward-looking and strategic (for a review see Shen and Su, 2007). 
Gallego and Şahin (2010) (see also Su, 2009) consider a model with ex ante homogeneous con-
sumers, but assume that consumers learn in a multiperiod, stochastic environment and that the 
firm is capacity constrained. They find that the firm maximizes its profits by selling to consumers 
as early as possible and allowing consumers to exercise the return option as late as possible. Chen
(2011) considers a related model of optimal pricing and refund policy with consumer learning, 
aggregate demand uncertainty, and capacity constraints.

The final closely-related literature is the dynamic mechanism design literature which consid-
ers optimal mechanisms when agents learn over time, and hence mechanisms in which infor-
mation is revealed sequentially.7 Two of the earliest papers are Baron and Besanko (1984) and 
Riordan and Sappington (1987). Both papers consider optimal regulatory policies when regu-
lated firms are learning about their costs over time. Board (2011) considers a related model in 
which a firm auctions (in advance) the right to consume in the future after they have learned their 
private value of consumption. Esö and Szentes (2007a) consider the optimal dynamic mechanism 
in which an informed client can hire an expert to generate additional information that the client 
can use to refine their decision making. They find the expert’s profit is the same as if the expert 
perfectly observed the client’s private information.8 Esö and Szentes (2007b) consider a related 
auction model in which the seller can release additional information to privately-informed agents 
who update their valuations based on the new information. As in the single agent model, in the 
optimal mechanism the seller captures all the rents associated with the information they provide. 
Krähmer and Strausz (2011) generalize both Courty and Li (2000) and Esö and Szentes (2007a)
by adding endogenous information acquisition with moral hazard.

Board and Skrzypacz (2010) consider a capacity-constrained firm selling to ex ante homo-
geneous consumers who arrive in an exogenously given stochastic arrival process but who are 
forward looking and can delay their purchases (i.e., can imitate consumers who arrive later). 
While their consumers do not learn additional information after they arrive (see also the closely-
related model of pricing with strategic consumers in competitive markets by Deneckere and Peck, 
2012), they characterize the optimal pricing and allocation and show that it can be implemented 
with simple deterministic pricing rules that depend only on time and remaining inventory.

An important paper in this literature is Pavan et al. (2014) whose dynamic envelope theorem 
characterizes the information rents of privately-informed agents. Since our paper characterizes 
environments in which the first best can be implemented, an important question is why their 
envelope theorem does not hold in our model. We discuss this in Section 4 of the paper.

Several related papers in dynamic mechanism design literature consider stochastic arrivals of 
new consumers after the mechanism is announced. Deb and Said (2015) consider a two-period 
model related to Courty and Li (2000) in which additional consumers arrive in period two who 
cannot write contracts in period one. They also assume that the firm that cannot commit in ad-
vance to the contracts it offers in period 2. They show that the firm can benefit from postponing 
ex ante contracting with buyers available in the first period, although this is never optimal un-
der full commitment. Gershkov and Moldovanu (2010) consider the optimal mechanism for a 
patient firm selling a fixed number of heterogeneous objects to a stochastic sequence of impa-

7 For recent surveys of this literature see Bergemann and Said (2011) and Vohra (2012).
8 Gale and Holmes (1992) use a mechanism design approach to analyze consumer learning, but in their model it is 

sufficient to utilize a static direct revelation mechanism because the firm’s optimal ex post allocation depends only on the 
ex ante information.
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tient, privately-informed buyers. Garrett (2013) considers a firm that faces stochastic arrivals of 
privately-informed buyers when the firm sells a durable good.

A paper that is more closely related to ours is Ely et al. (2013). They assume that consumers 
observe a signal of their demand when they arrive and only learn their final demand in the final pe-
riod. Because arrivals are stochastic, the optimal mechanism features an auction-like mechanism 
to determine the refund, or buyback, price. However, consumers’ valuations are not correlated 
with their arrival time, so firms do not screen on when consumers make their final purchase 
decisions.

Our work and Ely et al. (2013) both explicitly model the consumer learning process (see 
also Ata and Dana, forthcoming). Further research in this area is important and should improve 
our understanding consumers’ decisions about when to enter the purchasing process and firms’ 
responses to that behavior.

Finally, we analyze a model in which screening on when refunds take place is a useful 
screening instrument, a result which contrasts with the traditional view that intertemporal price 
discrimination is not profitable, a literature that began with Stokey (1979).9 We show intertem-
poral price discrimination may be profitable when consumers learn their valuations at different 
times and when the distribution of their valuations is correlated with when they learn.

3. The model

A single, risk-neutral firm sells a single, homogeneous good with unit cost c. Consumers are 
heterogeneous and their types are continuously distributed on [0, T ] with a strictly positive den-
sity function h (t) and cumulative distribution function H (t). That is, h (t) represents the relative 
frequency of type t consumers in the population. Consumers privately learn their type prior to 
time 0, and all consumption takes place simultaneously after time T .10 The type t determines the 
probability distribution of their valuations as well as the time at which they learn their valuations. 
Without loss of generality, we assume that a type t consumer privately learns her realized valu-
ation at time t . We let f (v, t) denote the density function of the joint distribution of types and 
valuations, and we assume that f (v, t) is continuously differentiable. The valuation of a type t
consumer is distributed according to the probability density function f (v|t), and the cumulative 
distribution function F (v|t) = ∫ v

v
f (ṽ|t) dṽ on the interval [v, v]. It follows that∫

v,t

f (v, t) dvdt = 1,

∫
v

f (v, t) dv = h(t) , and f (v, t) = f (v|t) h (t) .

Assuming that f (v|t) has a common support for all t significantly simplifies the analysis and 
would be difficult to relax.

Note that we have assumed perfect correlation between the buyer’s distribution and the time 
when she learn her valuation. This is a strong assumption and one that is potentially difficult 
to relax. In particular, if the consumer did not know at time 0 precisely when she would learn 
her valuation, then the optimal mechanism would require that the consumer report a much more 

9 See also Salant (1989) and Anderson and Dana (2009) for generalizations of Stokey (1979) in which intertemporal 
price discrimination may be profitable.
10 We sometimes refer to the contracting time as time zero and the consumption time at time T , but the contracting time 
is sometime after consumers learn their types, but before any consumers learn their valuations, and the consumption time 
is sometime after all consumers learn their valuations.
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complicated stream of information, dramatically increasing the complexity of the optimal mech-
anism. This restrictive assumption allows us to focus on mechanisms that can be implemented 
with a menu of refund schedules, a remarkably simple class of mechanisms. Much more work 
remains to be done to consider optimal mechanisms with more realistic assumptions about the 
relationship between consumers’ types and when they learn.

In what follows, we consider profit-maximizing incentive-compatible direct-revelation mech-
anisms for the seller. There is no loss in generality from restricting the seller to implement a sales 
mechanism in which consumers truthfully report their types, t , at time zero and then report their 
realized valuations, v, at time t (see Pavan et al., 2014; Myerson, 1986, and Green and Laffont, 
1986). Intuitively the seller can do no better than the maximally centralized communication sys-
tem in which, at every moment in time, each individual confidentially reports all of her private 
information.

Before describing the mechanism design problem formally, we introduce some notation. For 
each pair of reports of valuation v and type t , let y (v, t) be the probability that the seller delivers 
the good, and let x (v, t) denote the net payment to the seller. Consider a consumer whose type 
is t and whose valuation is v. Her ex post utility (or surplus) is given by

u(v′, t ′;v, t) = vy(v′, t ′) − x(v′, t ′) (1)

if she reports her type as t ′ and her valuation as v′. We will use u(v, t) to denote the consumer’s 
ex post utility when she reports her type and valuation truthfully. That is,

u(v, t) = vy(v, t) − x(v, t). (2)

The consumer’s ex ante expected utility as a function of her actual type, t , and her reported type, 
t ′, is

U(t ′; t) =
{
Et

[
maxv′ u(v′, t ′;v, t)

]
if t ′ ≥ t,

maxv′ Et

[
u(v′, t ′;v, t)

]
otherwise,

(3)

where Et denotes the expectation over v given the consumer’s type, t , or

Et [·] =
v∫

v

· f (v|t) dv.

We use U(t) to denote the consumer’s ex ante utility when she reports her type, and then later 
her valuation, truthfully. That is,

U(t) = Et [u(v, t)] =
v∫

v

u(v, t) f (v|t) dv,∀t. (4)

Finally, using integration by parts, we write the total expected gains from trade associated with 
sales to a type t consumer as

Et [max (v − c,0)] =
v∫

c

(v − c)f (v|t) dv = v̄ − c −
v∫

c

F (v|t) dv,∀t. (5)

The seller’s mechanism design problem (P0) can be stated as follows:

max
x(v,t),y(v,t)

∫
f (v, t)

[
x (v, t) − cy (v, t)

]
dvdt (P0)
v,t
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subject to

U(t) ≥ 0,∀t, (IR)

u(v, t) ≥ u(v′, t;v, t),∀v, v′, t, (ICt )

U(t) ≥ U(t ′; t),∀t, t ′, (IC0)

0 ≤ y (v, t) ≤ 1,∀v, t, (F)

and equations (1) through (4) (which define U and u as functions of x and y).
The first set of constraints are the individual rationality, or participation, constraints. These 

constraints are imposed to guarantee that the firm gives every consumer nonnegative expected 
surplus. Note that there is no ex-post individual rationality constraint, i.e., the ex-post utility 
u(v, t) of a type t consumer with a realized valuation v could be negative. For example, a con-
sumer might purchase a ticket to attend a meeting but not be eligible for a full refund if she later 
learns the meeting has been canceled.

The second set of constraints are the incentive compatibility constraints with respect to the 
consumers’ realized valuations. These are imposed to guarantee that each consumer, conditional 
on reporting her type at time zero truthfully, finds it optimal to report her realized valuation 
truthfully at time t .

The third set of constraints are the incentive compatibility constraints with respect to the 
reports of consumers’ types at time zero. These constraints can be divided into two distinct types 
because U(t ′; t) is defined differently for upward deviations and downward deviations. When a 
type t consumer reports a lower type, i.e., t ′ < t , she will subsequently be asked to report her 
valuation before she learns her true valuation, while when a type t consumer reports a higher 
type, i.e., t ′ ≥ t , she will subsequently be asked to report her valuation after she learns her true 
valuation.

The final set of constraints, denoted by (F), require the delivery rule y to be feasible.
The following lemma, which closely follows Courty and Li (2000), characterizes how a con-

sumer reports her valuation if she does not report her type truthfully at time zero. The proof is 
omitted.

Lemma 1. If the mechanism satisfies the incentive compatibility constraints, (ICt ), regarding the 
report of the consumers’ valuations, then

(i) if a type t consumer reports her type as t ′ at time zero, and if she knows her true valuation 
at time t ′ (because t ′ ≥ t ), then it is optimal for her to report her true valuation, that is, v ∈
arg maxv′ u(v′, t ′; v, t); and

(ii) if a type t consumer reports her type as t ′ at time zero, and if she does not know her true 
vacation at time t ′ (because t ′ < t), then it is optimal for her to report her expected valuation, 
that is, Et [v] ∈ arg maxv′ Et

[
u(v′, t ′;v, t)

]
.

As in Courty and Li (2000), Lemma 1(i) follows immediately from (ICt ) and holds because 
once the consumer learns v her payoff is independent of her true type and depends only on her 
announced type. So if (ICt ) holds then consumers will always reveal v truthfully.

Lemma 1(ii) also follows from (ICt ) and holds because a consumer whose valuation was Et [v]
would report it truthfully even after reporting her type as t ′, and the consumer’s payoff is linear 
in the realization of her valuation conditional on her reports, so if reporting Et [v] maximizes 
u(v′, t ′; Et [v], t ′) then reporting Et [v] must also maximize her expected utility.
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Using Lemma 1(i) for reports satisfying t ′ ≥ t and Lemma 1(ii) for reports satisfying t > t ′, 
and separating (IC0) into two constraints, the seller’s mechanism design problem becomes (P1):

max
x(v,t),y(v,t)

∫
v,t

f (v, t)
[
x (v, t) − cy (v, t)

]
dvdt (P1)

subject to

U(t) ≥ 0,∀t, (IR)

u(v, t) ≥ u(v′, t;v, t),∀v, v′, t, (ICt )

U(t) ≥ Et

[
u(v, t ′;v, t)

]
,∀t, t ′; t ′ ≥ t, (IC0)

U(t) ≥ Et

[
u(Et [v] , t ′;v, t)

]
,∀t, t ′; t ′ < t, (IC0)

0 ≤ y (v, t) ≤ 1,∀v, t. (F)

In this formulation, we separate the set of constraints (IC0) into two subsets in order to emphasize 
the difference between the upward and downward deviations in the consumer’s report of her type. 
The set of constraints (IC0) corresponds to upward deviations (imitating a type that learns later), 
whereas (IC0) corresponds to downward deviations (imitating a type that learns earlier).

This is the fundamental difference between the firm’s problem when consumers learn sequen-
tially, (P1), and Courty and Li (2000)’s analysis of the firm’s problem when consumers learn 
simultaneously. The ex ante incentive compatibility constraint in their paper is

U(t) ≥ Et

[
u(v, t ′;v, t)

]
,∀t, t ′, (6)

instead of (IC0) and (IC0), so it is equally easy to imitate any other type, while in our paper it is 
more costly for a consumer to imitate consumers who learn earlier than it is to imitate consumers 
who learn later.

If consumers had no private information, that is, if the seller could ignore the incentive 
compatibility constraints and maximize only subject to the individual rationality and feasibility 
constraints, then clearly the optimal solution to the above program is to set y(v, t) = 1 if v ≥ c

and y(v, t) = 0 otherwise, and to set x(v, t) to extract all of each consumer’s ex ante consumer 
surplus, that is, to set x(v, t) such that U(t) = 0. This is the complete-information or first-best 
solution. The seller is able to extract all of the consumer surplus and the solution allocates the 
good efficiently.

The following lemma is standard and is useful for further simplifying the seller’s problem. It 
states that under any optimal mechanism, when the consumer’s realized valuation is higher, she 
receives the good with a greater probability and has a greater consumer surplus. The proof of the 
lemma is standard in the mechanism design literature and therefore is skipped.

Lemma 2. The incentive compatibility constraint (ICt ) is satisfied if and only if
(i) ∂u (v, t) /∂v = y (v, t) for almost every v; and
(ii) y (v, t) is non-decreasing in v.

4. When screening on time achieves the first-best

The following proposition gives necessary and sufficient conditions under which the firm can 
implement the complete-information allocation and earn the complete-information profits even 
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though consumers’ types and valuations are privately observed. That is, we provide conditions 
under which the firm can implement the first-best outcome by screening only on when the return 
option can be exercised. Its proof is given in Appendix A.

Proposition 1. The seller can implement the complete-information solution if and only if

Et ′ [max (v − c,0)] ≥ Et [max (v − c,0)] ,∀t ′ > t, (IEGT)

and

Et ′ [max (v − c,0)] ≥ Et [v] − c,∀t ′ < t. (SOV)

Intuitively, the complete-information solution is implemented by charging every consumer 
p(t) = Et [max (v, c)] = Et [max (v − c,0)] + c at time 0, and offering them a refund of r(t) = c

at time t , where Et [max (v − c,0)] is the expected gains from trade for a consumer of type t . 
So if Condition IEGT, short for increasing expected gains from trade, did not hold, then a type t
would strictly prefer the lower-priced contract, 

{
p(t ′), r(t ′)

}
, which she could costlessly obtain 

by imitating type t ′ > t . Imitation of type t ′ > t is costless because the refunds offered are the 
same and because type t will know her valuation at time t ′ > t .

Condition SOV, short for sufficient option value, is necessary because otherwise type t would 
imitate type t ′ < t . The cost of this deviation is

Et [max (v − c,0)] − [Et [v] − c] , (7)

which is the value of the option to return the good if type t does not deviate (type t will report 
her valuation exceeds c when required to report early). This is a strictly positive cost that does 
not depend on which type t ′ < t that t imitates. So this cost makes small or local downward 
deviations unprofitable if the firm screens on when the refund can be exercised.

The benefit of this deviation is the reduction in the upfront payment, p(t) −p(t ′), or

Et [max (v − c,0)] −Et ′ [max (v − c,0)] , (8)

which is positive by Condition SOV. Clearly the cost, (7), is bigger than the benefit, (8), if and 
only if Condition SOV holds.

Since the expected gains from trade can be written as

Et [max (v − c,0)] = Et [v] − c +Et [max (c − v,0)] ,

and the option value, Et [max (c − v,0)], is always positive, Condition SOV is satisfied whenever 
the consumer’s expected valuation, Et [v], is decreasing in t . But Condition SOV may not be 
satisfied when the consumer’s expected valuation is decreasing. In particular, if v ≥ c then the 
option value is zero and Condition SOV is satisfied if and only if the expected valuation is 
increasing, so Condition IEGT and Condition SOV are mutually exclusive. However, when c
is sufficiently large, or when v is sufficiently small, or more generally when the option value is 
sufficiently large, then Condition IEGT and Condition SOV can both hold.

Proposition 1 shows that the seller is strictly better off when consumers learn their preferences 
sequentially; indeed, when Condition IEGT and Condition SOV hold, the seller can implement 
the unconstrained first-best. When Condition IEGT and Condition SOV are both satisfied, there 
is a unique mechanism, (x(v, t), y(v, t)), that extracts all of the surplus. One way the firm can 
implement this mechanism is with a menu of expiring refund contracts: the initial upfront price 
for a ticket is p(t) = Et [max (v, c)] and the refund is r(t) = c if the ticket is returned any time 
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up to time t . Since the refund is equal to c, only consumers with valuations higher than the c will 
consume, which implies that the allocation is ex post efficient. Moreover, the expected utility of 
all the consumers is equal to zero. Because Condition SOV of Proposition 1 is satisfied, no type 
t consumer would want to purchase the ticket designed for a higher type t ′ > t . Similarly, when 
Condition SOV of Proposition 1 is satisfied, no type t would want to purchase the ticket designed 
for a lower type t ′ < t since the refund of the ticket for type t ′ expires at time t ′, when the type t
consumer is still uncertain about her valuation for the ticket.

On the other hand, when the consumers learn their valuations at the same time, the seller 
cannot exploit the differences in learning times to screen consumers. In particular, in the model 
analyzed by Courty and Li (2000) the only case in which the seller can implement the first-best is 
the degenerate case in which all consumers have the same expected surplus, i.e., Et [max (v, c)]−
c does not depend on t .11

Importantly, Proposition 1 is inconsistent with the envelope theorem of Pavan et al. (2014), 
which characterizes the information rents that privately-informed agents earn in optimal dynamic 
mechanisms. Clearly our assumptions differ in important ways from those of Pavan et al. (2014). 
In some respects the differences in our setting and that of Pavan et al. (2014) are rather dra-
matic. In particular, the timing of consumers’ valuation reports depends on consumers’ earlier 
reports about their types, and we consider a continuous-time model while Pavan et al. (2014)
consider a discrete-time model. One intuitive way to think about the inconsistency is that we 
introduce screening on when consumers can exercise the return option and this instrument is not 
distortionary in our model. That is, requiring a type t consumer to exercise the return option at 
time t (instead of later every consumer has learned) is not costly for type t , but is costly for type 
t ′ > t . But the fundamental reason for the inconsistency is that the impulse response functions 
are unbounded in our setting and so the envelope theorem does not apply.

Note also that as in the general model of Pavan et al. (2014), the agent’s private information 
in this paper at any moment τ can be summarized with a one-dimensional type, which is his 
initial type t at all time τ < t and his realized valuation v for time τ > t . However, the impulse 
response of this stochastic process to the agent’s initial type is infinite at the moment τ = t (since 
a small change in t shifts the agent’s type from t to the agent’s realized value). In contrast, the 
PST envelope-theorem derivation of the agent’s information rents relies on their assumption of 
bounded impulse responses. The unboundedness of impulse response in our paper may be the 
technical reason for the principal’s ability to extract the agent’s information rents under some 
conditions.

Note however that the assumption that learning is instantaneous and not gradual is not crucial 
for implementing the first-best allocation. Ata and Dana (forthcoming) explore a generalization 
of the binary distribution numerical example discussed above and derive similar results even 
when information about valuations arrives gradually. In that paper, consumers’ beliefs evolve in 
response to new information between time 0 and time t , and we show that it is a cap on how 
optimistic consumers can become, not on quickly their beliefs evolve that determines whether 
the first-best is incentive compatibility. Of course, in that paper we are also assuming the type 
space is multidimensional, which is inconsistent (Pavan et al., 2014). Clearly, it is important to 
understand which assumptions in our model are critical for our economic insights and how those 
assumptions differ from those in Pavan et al. (2014) and other related research.

11 This is because Courty and Li (2000) assume the distribution of valuations has full support. When the distribution 
is binary, the complete-information profit may be feasible with heterogeneous consumers because differences in the 
refundability of purchases do not distort ex post consumption.
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Clearly a more realistic assumption is that consumers vary in when they expect to learn, but 
precisely when they learn their valuations is still random. For example, a type t consumer might 
learn her valuation at a random time in a small interval around t . In such a setting, requiring 
consumers to report their valuations at time t would be costly, but it would still be less costly for 
a type t consumer to report her valuation at time t then for a type t ′ consumer, where t ′ > t . So 
while it wouldn’t be possible to achieve the first-best in this case, some of the same economic 
insights should hold.

A simple case in which both Condition IEGT and Condition SOV of Proposition 1 are sat-
isfied, and the optimal mechanism achieves the first best, is when consumers who learn their 
valuations later have more dispersed priors about their valuations, in the sense of a mean-
preserving spread (MPS). We call this Forward MPS and in Section 5 contrast this with Reverse 
MPS in which consumers who learn their valuations later have less dispersion in their valuations. 
We define forward mean-preserving spread following the definition in Rothschild and Stiglitz
(1970).

Assumption 1 (Forward MPS). Let μ = Et [v] for all t . For all t , t ′ such that t ′ > t ,

v∫
v

[F(v′|t ′) − F(v′|t)]dv′ ≥ 0,∀v, (9)

with strict inequality for some v.

We now show that Condition IEGT and Condition SOV of Proposition 1 are satisfied under 
Assumption 1, and so the complete-information outcome can be implemented.

Proposition 2. Under Assumption 1 (Forward MPS), the first-best solution can always be imple-
mented.

Proof. Using (5),

Et ′ [max (v − c,0)] −Et [max (v − c,0)] =
v∫

c

[
F (v|t) − F

(
v|t ′)]dv,

= −
c∫

v

[
F (v|t) − F

(
v|t ′)]dv ≥ 0,

for all t ′ > t , where the inequality follows from Assumption 1, so Condition IEGT of Proposi-
tion 1 is satisfied. Also, Assumption 1 implies Et [v] = Et ′ [v], so

Et ′ [max (v − c,0)] ≥ Et ′ [v] − c

implies

Et ′ [max (v − c,0)] ≥ Et [v] − c,

for all t, t ′, so Condition SOV of Proposition 1 is satisfied. �
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Note that unlike most standard sequential screening frameworks, the firm is offering every 
consumer a contract with the same strike price, or refund option, yet these consumers are not 
pooled; the price in each case is equal to their individual willingness to pay. Instead the firm sep-
arates initial types by varying the time that the option to claim the refund expires, an instrument 
that does not reduce total surplus.

Intuitively, consumers who learn late have the same expected valuation, but their expected 
valuation conditional on the valuation being above cost is higher, so Condition IEGT is clearly 
satisfied. And Condition SOV is satisfied because at the complete-information prices a consumer 
who imitates a consumer who learns earlier must get a negative expected consumer surplus – 
the price she pays and her expected valuation are both the same as the consumer she imitates, 
but that consumer gets zero expected surplus while deriving a positive benefit from the option to 
return the good if her valuation is low.

In Section 6 we will see that both Condition IEGT and Condition SOV may also hold when 
the consumers’ distributions can be ordered with respect to first-order stochastic dominance.

5. When screening on time is not useful

In Section 4 we showed that under some conditions the seller can achieve the first best by 
using the timing of refunds as a screening device. This section considers instead the conditions 
under which screening on the timing of refunds is ineffective, or equivalently, when the optimal 
mechanism with sequential learning is equivalent to the optimal mechanism with simultaneous 
learning.

Screening on time is a potential way to prevent a buyer of type t from imitating a buyer of 
type t ′ < t , but not vice versa. The asymmetry is because once the buyer learns her valuation 
she always knows it, and so imitating a consumer with a higher type is easy, while imitating a 
consumer with a lower type is harder because it is costly for her to report her valuation before 
learning it. So time is not useful as a screening device when low types would like to imitate high 
types, which happens when the expected gains from trade are decreasing in t .

Formally, the firm’s problem when it does not screen on the timing of its refunds, or equiva-
lently, when consumers learn simultaneously, is the problem analyzed by Courty and Li (2000), 
and it is identical to (P1) except that (IC0) is replaced with

U(t) ≥ Et

[
u(v, t ′;v, t)

]
,∀t, t ′; t ′ < t, (IC′

0)

that is, except that all of the consumers report their valuation v after they know it. We call this 
problem (P1

CL).
The following lemma, which is also used in Section 6, helps us characterizes the expected 

surplus function, U , for any mechanism. Its proof is in Appendix A.

Lemma 3. For any feasible mechanism in which U(t) is monotone, (IC0) implies that

U ′ (t) ≤ −
v∫

v

y (v, t)
∂F (v|t)

∂t
dv for almost every t. (10)

Using the definition of U and u, we can write the firm’s objective function as

max
y(v,t)

∫
f (v, t) (v − c)y (v, t) dvdt −

∫
U(t)h(t)dt. (11)
v,t t
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Lemma 3 implies that if U(t) is non-increasing then for any optimal policy the individual 
rationality constraint must bind at T , or U(T ) = 0. Also, if we relax the firm’s problem by 
ignoring the global incentive compatibility constraints, then it is also clear that (10), the local 
incentive compatibility constraint, must bind. Equation (10) and U(T ) = 0 imply

U (t) = −
T∫

t

v∫
v

y (v, t)
∂F (v|t)

∂t
dvds.

This holds in both our problem and in (P1
CL), because (10) binds in both. Substituting this ex-

pression into (11) we can write the firm’s relaxed problem as

max
y(v,t)

∫
v,t

f (v, t) (v − c)y (v, t) dvdt +
T∫

0

T∫
t

v∫
v

h(t)
∂F (v|s)

∂s
y (v, s) dvdsdt,

subject to the constraint that y(v, t) non-decreasing in v. And using integration by parts the firm’s 
problem can be rewritten

max
y(v,t)

∫
v,t

(
(v − c)f (v, t) + (1 − H(t))

∂F (v|t)
∂t

)
y (v, t) dvdt, (P2)

subject to the constraint that y(v, t) non-decreasing in v. Note that (P2) is a relaxation of both 
(P1) and (P1

CL) under the assumption that U(t) is increasing.
By Lemma 1, it is optimal for a consumer to report her true type if she knows it, or v =

arg maxv′ u(v′, t ′; v, t), so Et

[
u(v, t ′;v, t)

]≥ Et

[
u(Et [v] , t ′;v, t)

]
, which implies that if (IC′

0)
holds then so does (IC0). This establishes the following lemma.

Lemma 4. If the solution to (P2) solves (P1
CL) then it also solves (P1).

In other words, if the constraints omitted from the firm’s problem when it does screen on time, 
(P1

CL), are not binding, then time is not a useful screening device. The omitted constraints are 
(IR) for t < T and the global incentive compatibility constraints, (IC0) and (IC′

0).
A common solution strategy for problems like (P2) is to make assumptions that guarantee that

(v − c)f (v, t) + (1 − H(t))
∂F (v|t)

∂t
(12)

is monotonically increasing. These assumptions would guarantee that the solution to (P2) is a 
function y(v, t) that is non-decreasing in v and hence that y(v, t) ∈ {0, 1} almost everywhere, or 
equivalently that the solution is deterministic.

However, it is not necessary to impose these additional assumptions. Because (P2) is subject 
to the constraint that y(v, t) is non-decreasing, it must have a deterministic solution even if (12) is 
not monotonically increasing. This is because the firm is maximizing a linear objective function 
over a closed convex subset of a linear space of functions, and it is well known that in this case 
the maximal value must be achieved at an extreme point of the feasible set. An extreme point in 
the set of nondecreasing functions from R → [0, 1] is a function that jumps from 0 to 1 at one 
point, and its value at that point is immaterial for the integral (see for example Segal, 2003). So 
a solution to (P2) exists in which y(v, t) ∈ {0,1} almost everywhere.
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Using the above insight allows us to generalize the results of Courty and Li (2000), who do 
not characterize general conditions under which the solution is non-decreasing, but instead focus 
on special distributional examples in which it is possible to show the solution is non-increasing.

We begin with some definitions. First, we define Reverse MPS as follows: as the case in which 
the consumers’ distributions can be ranked using a mean-preserving spread and the distribution 
of valuations of consumers who learn earlier are a mean-preserving spread of the distribution of 
valuations of consumers who learn later, implying that the expected gains from trade are higher 
for consumers who learn earlier because the expected valuation is unchanged, but conditional on 
v < c, expected valuations are lower, and conditional on v > c, expected valuations are higher.

Assumption 2 (Reverse MPS). Et [v] = μ for all t , and

v∫
v

[F(v′|t) − F(v′|t ′)]dv′ ≥ 0,∀v, t ′, t; t ′ > t, (13)

with strict inequality for some v, or equivalently,

v∫
v

∂F (v′|t)
∂t

dv′ ≤ 0,∀v, t, (14)

with strict inequality for some v, and strict equality for v = v.

In other words, Reverse MPS is satisfied when F(v|t) is a mean preserving spread of F(v|t ′)
for all t < t ′. Assumption 2 implies that there exists a v̂ such that ∂F (v̂|t)/∂t = 0 for all t , 
or equivalently that the distributions F(v|t) cross at a common point. Equivalently, for all t , 
∂F (v̂|t)/∂t ≤ 0 for all v < v̂, and ∂F (v̂|t)/∂t ≥ 0 for all v > v̂.

We define Reverse FOSD as the case in which the consumers’ distributions can be ranked by 
first-order stochastic dominance and the distribution of valuations of consumers who learn earlier 
first-order stochastic dominates the distribution of valuations of consumers who learn later.

Assumption 3 (Reverse FOSD). F
(
v|t ′) ≥ F (v|t) for all v, t , t ′ such that t ′ > t , with strict 

inequality for some v.

The following Lemma shows that U is decreasing, so we can apply Lemma 4.

Lemma 5. Under Assumption 2 or 3, the optimal expected utility function, U(t), is non-
increasing.

Two additional assumptions are required to demonstrate that the solution to (P2) is the solution 
to the more general problem, (P1).

Assumption 4. 
∣∣∣ (1−H(t))

h(t)
∂F (v|t)/∂t

f (v|t)
∣∣∣ is non-increasing in t for all v, t .

Assumption 5. 
∂
[

∂F (v|t)/∂t
f (v|t)

]
> − h(t) for all v, t .
∂v 1−H(t)
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Note that ∂F (v|t)/∂t
f (v|t) > 0 by Assumption 3, so sufficient conditions for Assumption 4 are that 

the monotone hazard rate assumption holds and that 
∣∣∣∂F (v|t)/∂t

f (v|t)
∣∣∣ is non-increasing in t .

The following is an application of Lemmas 4 and 5 and of Lemmas 3.3 and 3.4 in Courty and 
Li (2000), and note again that the result generalizes Courty and Li (2000) who impose additional 
distributional assumptions to prove that the solution is non-increasing.

Proposition 3. Under Assumptions 2 (Reverse MPS) and 4–5, if c > v̂ (alternatively, c < v̂), the 
solution to (P2) is a non-decreasing (alternatively, non-increasing) refund schedule, r(t), with 
r(t) > c (alternatively, with r(t) < c). This solution is also the optimal policy in (P1) and the 
optimal policy in a model in which consumers learn simultaneously, (P1

CL).
Similarly, under Assumptions 3 (Reverse FOSD) and 4–5, the solution to (P2), is a non-

decreasing refund schedule, r(t). This solution is also the optimal policy in (P1) and the optimal 
policy in a model in which consumers learn simultaneously, (P1

CL).

Proof. First, consider Reverse MPS. Clearly r(0) = c (no distortion at t = 0), so if c < v̂, then 
F (r(0)|0) /∂t ≤ 0, and under Assumption 4, φt (r(t), t) ≥ 0 for all t , and under Assumption 5, 
φv(r(t), t) > 0 for all t , so r ′(t) ≤ 0 and r(t) ≤ c for all t , and by Lemma 4 the solution to the 
relaxed problem is the solution to the original problem.

On the other hand, if c > v̂, then F (r(0)|0) /∂t ≥ 0, and under Assumption 4, φt (r(t), t) ≤ 0
for all t , and under Assumption 5, φv(r(t), t) > 0 for all t , so r ′(t) ≥ 0 and r(t) ≥ c for all t , and 
by Lemma 4 the solution to the relaxed problem is the solution to the original problem.

Optimality when consumers learn simultaneously follows from the observation that a deter-
ministic solution exists and from Lemma 3.4 in Courty and Li (2000), which shows that the 
omitted global incentive compatibility constraints are satisfied provided that the solution satis-
fies r ′(t) < 0 when r(t) < c and r ′(t) > 0 when r(t) > 0. And optimality when consumers learn 
sequentially follows from Lemma 4.

Now consider Reverse FOSD. Using f (v|t) = f (v, t)h(t), the first order condition for (P2) is 
f (v, t)φ(r(t), t) = 0, where

φ(v, t) =
(

(v − c) + (1 − H(t))

h(t)

∂F (v|t) /∂t

f (v|t)
)

.

Using the implicit function theorem,

r ′(t) = − φt (r(t), t)

φv(r(t), t)
, (15)

where Assumption 4 is sufficient to guarantee that φt ≤ 0, and Assumption 5 is sufficient to 
guarantee φv > 0, so r ′(t) is non-negative.

Optimality when consumers learn simultaneously follows from the observation that a de-
terministic solution exists and from Lemma 3.3 in Courty and Li (2000), which shows that the 
omitted global incentive compatibility constraints are satisfied provided that the solution satisfies 
r ′(t) ≥ 0. And optimality when consumers learn sequentially follows from Lemma 4. �

Reverse MPS implies that consumers who learn earlier have more dispersed valuations, a case 
we contrast with Forward MPS analyzed in the previous section. Reverse FOSD implies that con-
sumers who learn earlier have greater valuations in the sense of first-order stochastic dominance, 
a case we contrast with forward first-order stochastic dominance in the next section. Intuitively, 
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both Reverse MPS and Reverse FOSD imply that the expected gains from trade are decreasing in 
t , so a type T buyer is associated with the smallest gains from trade, and the optimal mechanism 
satisfies U(T ) = 0 and U ′(t) ≤ 0. The lower types get positive rents because they can always 
imitate type T and guarantee themselves a positive surplus.

6. When screening on the time is somewhat useful

So far we have considered two extreme outcomes. First, we considered conditions under 
which screening on when the refund option can be exercised implements the first best, and sec-
ond, we considered conditions under which screening on when the refund option can be exercised 
is not useful, and the firm not do any better than to treat all consumers as if they learned simulta-
neously. We now analyze a case in which screening on when the refund option can be exercised 
is useful, but the first best cannot be achieved.

Suppose consumers’ conditional valuation distributions, F(v|t), can be ordered on [0, T ] with 
respect to a first-order stochastic dominance (FOSD) and that consumers who learn later have 
higher valuations. This is a natural assumption in many settings. For example, in an airline con-
text, business travelers often have higher valuations than the leisure travelers, and they typically 
learn their travel needs much closer to the departure time.

Formally, we define Forward FOSD as follows:

Assumption 6 (Forward FOSD). F
(
v|t ′) ≤ F (v|t) for all v, t , t ′ such that t ′ > t , with strict 

inequality for some v.

Assumption 6 and equation (5) imply that Et [max (v, c)], and as a consequence
Et [max (v − c,0)], is weakly increasing in t , so Condition IEGT of Proposition 1 is satisfied.

When Condition SOV of Proposition 1 is also satisfied, then the firm allocates the good effi-
ciently and extracts all the surplus. However under Assumption 6, Condition SOV need not be 
satisfied. For example, if v ≥ c, then Condition SOV cannot hold. Indeed, under Assumption 6, 
Condition SOV of Proposition 1 is violated, that is Et [v] > Et ′ [max(v, c)], for some t > t ′, if 
and only if

ET [v] > E0 [max(v, c)] , (16)

because ET [v] ≥ Et [v] for all t and Et [max (v, c)] ≥ E0 [max (v, c)] for all t , both of which 
follow from Assumption 6.

In this section we assume that equation (16) holds:

Assumption 7. Condition SOV of Proposition 1 is violated.

Again, when Condition SOV is violated, the firm cannot extract all of the surplus – if the firm 
offered the complete information contracts, then even with restrictions on when the return option 
would be exercised, type T would still imitate type 0.

Under Assumptions 6 and 7, the optimal mechanism has several interesting features. First, we 
show that both local and global incentive compatibility constraints bind. The highest type, type T , 
is offered a price that makes her indifferent between reporting her type as type T or type 0, or 
more precisely, indifferent between reporting T and reporting any t in an interval [0, σ ]. So 
downward global incentive compatibility constraints bind for type T . The rents given to type T
make it attractive for consumers in an interval [τ, T ) (where τ > σ ) to imitate type T , so the 
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optimal mechanism offers these consumers a lower price as well, so the upward local incentive 
compatibility constraint binds for these consumers. For these consumers, the downward global 
incentive compatibility constraints do not bind because the cost of imitating type 0 is higher for 
them (they must give up even more option value by foregoing the option to return) so they prefer 
instead to imitate type T (they also pay less than type T when they report truthfully).

Second, as is evident from the above discussion, incentive compatibility constraints bind in 
both directions, that is, both upward (local) and downward (global) incentive compatibility con-
straints bind.

Third, we find that the optimal mechanism includes both upward distortions in the allocation 
for some consumer types and simultaneously downward distortions in the allocations for other 
consumer types. Type 0 is offered a higher refund and a smaller allocation relative to the complete 
information contract (a downward allocation distortion), increasing the ex ante price paid by 
type 0 and reducing the incentive for type T to imitate type 0 (because she pays the ex ante 
price but does not ever enjoy the refund). And in an interval (τ, T ] consumers are offered a 
lower refund and a greater allocation (an upward allocation distortion) relative to the complete 
information contract, reducing the incentive for consumers to imitate higher type consumers. 
While other papers have shown the distortions can go in more than one direction, even in the 
same mechanism (see for example Pavan et al., 2014), we think that the simultaneous presence 
of upward and downward distortions in our paper is particularly natural and intuitive.

Finally, the upward distortion increases with t , so we find there is a distortion “at the top” for 
the buyer with the largest ex ante highest willingness to pay. This counterintuitive result arises 
because the global incentive constraint implies that type T gets enough additional rents that the 
direction of the binding local incentives constraints is reversed. Distorting the allocation “at the 
top” for type T reduces the information rents captured by consumers in the interval (τ, T ].

In what follows, we first solve a relaxed version of the seller’s problem and then (in Proposi-
tion 7) show that its solution satisfies all the constraints of the original problem. As intermediate 
steps, we first prove that the expected surplus U(t) of type t is non-decreasing under FOSD and 
then show that we can restrict attention to deterministic allocations.

Lemma 6. The optimal expected utility function, U(t), is non-decreasing.

Lemmas 3 and 6 imply

0 ≤ U ′ (t) ≤ −
v∫

v

y (v, t)
∂F (v|t)

∂t
dv for almost every t, (17)

and together with Lemma 2, we use equation (17) to further relax the seller’s problem, which we 
call (P3).

max
U(t),u(v,t),y(v,t)

∫
v,t

(v − c)y (v, t) f (v, t) dvdt −
∫
t

U(t)h(t)dt, (P3)

subject to

U(t) ≥ 0 for all t, (IR)

y (v, t) = ∂u (v, t)
and y (v, t) is non-decreasing in v, (ĨCt )
∂v
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0 ≤ U ′ (t) ≤ −
v∫

v

y (v, t)
∂F (v|t)

∂t
dv for all t, (ĨC0)

U(T ) ≥ U(t;T ) for all t, (ICT
0 )

0 ≤ y (v, t) ≤ 1 for all v, t. (F)

The U(t) in the argument of the firm’s objective function is redundant since the firm still 
chooses x and y, or equivalently u (v, t) and y (v, t), which determine U(t) and U(t; t ′) from 
equations (3) and (4).

The following proposition partially characterizes the optimal solution to the relaxed problem, 
and its proof is given in Appendix B.

Proposition 4. Under Assumption 6 there exists a deterministic solution, y(v, t) ∈ {0, 1}, for all 
v, t , to the relaxed problem (P3). In particular, for each t , there exists a cut off point r (t) such 
that y (v, t) = 1 if and only if v ≥ r (t). Moreover, there exists τ such that

U (t) =
{

0 if t ≤ τ,

− ∫ t

τ

∫ v

r(s)
∂F (v|s)

∂s
dvds if t ≥ τ.

Proposition 4 establishes the existence of an optimal solution. The first part of the proof estab-
lishes the solution is deterministic, y(v, t) ∈ {0, 1}. We use the existence of a non-deterministic 
solution to define a new choice problem for the firm, and then we demonstrate that the new 
choice problem has a deterministic solution that does at least as well as any non-deterministic 
solution and satisfies the constraints. The proof uses the fact that the unconstrained problem has 
a deterministic solution (see the discussion in Section 5).

The second part of the proof establishes the existence of a threshold τ below which (ĨC0) binds 
at its lower bound and above which (ĨC0) binds at its upper bound. Note that if Assumption 7 is 
violated, then the proposition still holds, but the first best is achieved, and τ = T .

The next proposition holds when the mechanism is deterministic and is instrumental in char-
acterizing the optimal contract. The proof is in Appendix B.

Proposition 5. Under Assumption 6, we have that for all t

U (t;T ) = (ET [v] − r (t))1{ET [v] − r(t)≥0} + U (t) −
v∫

r(t)

(v − r (t)) f (v|t) dv, (18)

where the indicator function 1{x≥0} is 1 if x ≥ 0, and zero otherwise.

Note that by Proposition 4, the second term, U(t), is equal to zero for t ≤ τ . And more 
importantly, if ET [v] − r (t) < 0 then Equation (18) implies U(t; T ) < U(t). Since Proposi-
tion 4 guarantees that any optimal mechanism satisfies U(T ) > U(t), this means that whenever 
ET [v]− r (t) ≤ 0, the incentive constraint U(T ) ≥ U(t; T ) can be ignored. So if type T deviates 
and reports type t , it must be that type T will not return the good (or ET [v] − r (t) > 0). We use 
this below when we further relax the firm’s optimization problem.

We can now further simplify the firm’s relaxed problem, (P3). First, using Proposition 4 and 
Proposition 5, we replace U(t) and U(t; T ) in the objective function and in the constraints. 
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Note also that these functions clearly satisfy (IR) and (ĨC0) so these constraints can be dropped. 
Also, Proposition 4 implies that the optimal y(v, t) can be represented by a function r(t) where 
y(v, t) = 1 if v ≥ r(t) and 0 otherwise. It follows that we can write the firm’s problem as choos-
ing τ and r(t) on [0, T ]. That is, without loss of generality we can restrict our attention to 
contracts in which a type t consumer makes an ex ante payment for the good, which we will 
denote by p(t), and then receives a refund, which we will denoted by r(t), if she returns the 
good at time t after learning their valuations (in which case she will return the good if and only if 
v < r(t)). This menu of expiring refund contracts clearly satisfy (F), so this constraint is dropped. 
Finally, we ignore (ĨCt ) and then show in Proposition 7 that the solution to the relaxed problem 
satisfies the ignored constraints.

After integrating the objective function by parts and dropping (ĨCt ), we can write the firm’s 
relaxed problem as (P4):

max
{τ,r(t)}

τ∫
0

v̄∫
r(t)

f (v, t)(v − c)dvdt

+
T∫

τ

v̄∫
r(t)

f (v, t)

(
v − c + 1 − H(t)

h(t)

∂F (v|t) /∂t

f (v|t)
)

dvdt (P4)

subject to U(T ) ≥ U(t ′; T ), which, using the relaxed definition of U(t; T ) from Proposition 5, 
becomes

−
T∫

τ

v∫
r(t)

∂F (v|t)
∂t

dvdt ≥ ET [v] − r
(
t ′
)− U(t) −

v̄∫
r(t ′)

(v − r(t ′))f (v|t ′)dv,∀t ′

≤ T . (IC
��

T
0 )

Proposition 6 characterizes the optimal solution to the problem (P4) and shows that the optimal 
refund schedule to be decreasing in t . Assumptions 8 and 5 are sufficient conditions.

Assumption 8. ∂F (v|t)/∂t
f (v,t)

is non-decreasing in t for all t and all v ∈ [v, c
]
.

Assumption 9. ∂F (v|t)/∂t
f (v,t)

is non-increasing in v for all t and all v ∈ [v, c
]
.

Intuitively, Assumption 8 requires that the informativeness of a consumer’s type about her 
valuation weakly increases with her type (for all valuations less than c).

Proposition 6. Under Assumptions 6–9 the solution to (P4) is characterized by two thresholds σ
and τ , such that 0 < σ ≤ τ < T and (IC

��

T
0 ) binds for t ≤ σ and not otherwise. The optimal r(t)

is continuous and satisfies:

1. for t ≤ σ , r (t) ≥ c, r (t) is non-increasing, and r(t) is the unique solution to (IC
��

T
0 );

2. for t ∈ [σ, τ ], r (t) = c; and
3. for t ≥ τ , r (t) is strictly decreasing.



752 M. Akan et al. / Journal of Economic Theory 159 (2015) 728–774
Note that this solution exhibits both downward distortions in allocation (a return price dis-
torted higher than the complete information price) at and near t = 0 and upward distortions in 
allocation (a return price distorted lower than the complete information price) at and near t = T .

In the proof we further relax the firm’s problem by considering only the downwards incentive 
constraints are for type T , who is indifferent between reporting type T and type t ∈ [0, σ ] at 
the optimum, and considering only the upwards local incentive constraints for type t ∈ [τ, T ]. 
We then check that the omitted local and global incentive constraints are satisfied. Type T is 
most tempted to report her type as type 0, and setting r(t) ≥ c reduces the rents paid to type T . 
However the need for the distortion diminishes as t increases. At σ the global incentive constraint 
for type T no longer binds and no distortion is needed (of course σ goes to 0 as the option value 
gets larger so Assumption 4 no longer holds). Again, the constraint does not bind at τ , and 
becomes increasingly binding as t approaches T , so the distortion increases, and r(t) falls, as t
increases.

Although Assumptions 8 and 9 are sufficient to ensure that r ′ (t) ≤ 0, they are not necessary. 
Indeed, the condition r ′ (t) ≤ 0 is itself sufficient but not necessary for proving that (IC

��

T
0 ) is slack 

on [τ, T ) (see Lemma 7 in Appendix B).
Given the cutoff points {r (t) : 0 ≤ t ≤ T } characterized in Proposition 6, the payments can be 

written as follows:

x (v, t) =
{

p (t) − r(t) if v < r (t) ,

p (t) if v ≥ r (t) ,

where again we interpret p(t) as an upfront payment and r(t) as a refund which is optional and 
must be exercised at time t . Note that the expected surplus of type t consumer can be written as

U (t) = −(p (t) − r(t)) +
v̄∫

r(t)

(1 − F (v|t)) dv. (19)

Then, since U (t) = 0 for t ∈ [0, τ ], we write

p(t) − r(t) =
v̄∫

r(t)

(1 − F (v|t)) dv for t ≤ τ.

For t ≥ τ , we write the following by taking the derivatives of both sides of (19),

p′(t) − r ′(t) = −U ′ (t) − r ′(t) (1 − F (r (t) |t)) −
v̄∫

r(t)

∂F (v|t)
∂t

dv. (20)

Therefore, we can calculate p (t) − r(t) for t ≥ τ from (20) and the boundary condition that

p (τ) − r(τ ) =
v̄∫

r(τ )

(1 − F (v|τ)) dv.

We interpret {(p (t) , r (t)) : 0 ≤ t ≤ T } as a menu of expiring refund contracts where a type 
t consumer is charged the initial price p (t) and is offered a refund of r(t) if he chooses not to 
consume the good at (or before) time t . In other words, the refund r(t) expires at time t .
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The following proposition establishes that in the case of forward first-order stochastic dom-
inance, this refund contract, {(p (t) , r (t)) : 0 ≤ t ≤ T }, is an optimal contract in the seller’s 
original mechanism design problem, (P0), that is, that the contract satisfies the omitted con-
straints. The proof is standard and follows the proof in Courty and Li (2000); it is included in 
Appendix B.

Proposition 7. Under Assumptions 6–9 there exists a solution {x(v, t), y(v, t)}, to the firm’s 
mechanism design problem which can be implemented as the menu of expiring refund contracts 
{(p (t) , r (t)) : 0 ≤ t ≤ T } characterized above.

The following corollary investigates how the optimal initial price {p (t) : 0 ≤ t ≤ T } changes 
over time and is proved in Appendix B.

Corollary 1. The optimal menu of refund contracts {(p (t) , r (t)) : 0 ≤ t ≤ T } has the following 
properties: The optimal initial price p (t) is constant for t < σ and is strictly increasing with 
rate p′ (t) = − 

∫ v̄

c
∂F (v|t)

∂t
dv for t ∈ [σ, τ). Also, the price is strictly decreasing with rate p′ (t) =

r ′ (t)F (r (t) |t) for t ≥ τ , while p (T ) > p (t) for all t ≤ σ . Finally, the effective price p (t) −
r (t)F (r (t) |t), defined as the expected transfer from the consumer to the seller, is increasing 
in t .

The interval [0, σ) is the range in which, like Courty and Li (2000), allocations are distorted 
downwards in order to extract more profit from (or give less surplus to) type T . The interval 
(τ, T ] is the range where allocations are distorted upwards, because consumers in this range are 
receiving positive surplus since they would otherwise imitate type T . Distorting their allocations 
upwards reduces the incentive of these consumers to overreport their valuations.

7. Concluding remarks

This paper is the first to examine optimal pricing when consumers vary in when they learn 
their valuations over time, and when the time that consumers learn their valuations is correlated 
with the ex ante distribution of their valuations. Sequential learning gives the firm an additional 
instrument with which to screen consumers. In some cases this instrument enables the firm to 
implement the first-best allocation and extract all of the expected surplus from the consumers 
using ex ante contracts. In particular, the seller can implement the first best when consumers 
who learn later have more dispersed valuations, or when consumers who learn later have larger 
valuations and the option value of waiting to commit is large because the ex post gains from trade 
can be negative. In other cases, screening on the expiration of the refund option is not profitable, 
and the profits are the same as when buyers learn simultaneously.

Two aspects of this pricing problem are worth highlighting. First, a natural asymmetry exists 
because it is easier to charge a higher price to consumers who learn late than to consumers who 
learn early. This is because consumers who learn early can costlessly imitate consumers who 
learn late, but not vice versa. And second, unlike many screening problems, imposing restrictions 
on when they exercise their return option, need not be distortionary.

Much work remains to be done in characterizing optimal pricing when consumers learn over 
time. First, not all distributions of valuations and learning fit into the cases we analyzed. Second, 
and more importantly, when learning takes place and the ex ante distribution of valuations are 
unlikely to be perfectly correlated. In more realistic settings consumers are likely to have multiple 
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dimensions of heterogeneity, which could significantly increase the complexity of the optimal 
mechanism. Third, we assumed that consumers learn instantaneously while it is more realistic to 
suppose that learning takes place gradually.

Allowing for gradual learning is difficult because the amount of information reporting in-
creases significantly, but notice that it should not significantly alter the consumers’ incentives. 
That is, holding the mechanism fixed, we can allow the consumer to have a little more informa-
tion just prior to time t without violating any binding incentive constraints because if consumers 
are going to deviate and pretend to be a lower type, they do not deviate locally. Since local down-
ward constraints are slack, giving consumer more information shortly before they report their 
valuation does violate the constraints (see Ata and Dana, forthcoming for additional discussion 
of gradual learning).

Finally, we have focused on a mechanism design analysis which emphasizes the role of ex 
ante contracts and return options as mechanisms for extracting surplus. However, many firms 
that face consumers who learn over time may not be able to use ex ante contracts. This could 
be because of transaction costs, competition with rivals, or because consumers arrive to late for 
initial contracting (though late arrival may itself require justification using transaction costs). 
Further analysis of optimal pricing in such environments is clearly needed.

Appendix A. Proofs of the results in Sections 3 through 5

Proof of Proposition 1. The complete-information allocation is y(v, t) = 1 if v ≥ c and 
y(v, t) = 0 otherwise. The complete-information payments, x(v, t), are not unique, but must 
extract all of the ex-ante consumer surplus, so

Et [x(v, t)] = Et

[
vy(v, t)

]=
v∫

c

vf (v|t) dv,∀t. (A.1)

To prove the “if” part of Proposition 1, first note that Lemma 2 requires that ∂u(v, t)/∂v =
y(v, t) almost everywhere, so given y(v, t), the payments x(v, t) satisfies (ICt ) if and only if for 
some p(t)

x(v, t) =
{

p (t) if v ≥ c,

p (t) − c otherwise.
(A.2)

for all v, t . So the unique payments that satisfy (A.1) and (ICt ) are

x(v, t) =
{
Et [max (v − c,0)] + c if v ≥ c

Et [max (v − c,0)] otherwise.
(A.3)

Clearly the above mechanism, (x(v, t), y(v, t)), is individually rational since expected consumer 
surplus is 0. And clearly (ICt ) holds since conditions (i) and (ii) of Lemma 2 are satisfied. Next, 
IC0 is satisfied if Condition IEGT holds because x(v, t) is increasing in t and y(v, t) does not 
depend on the reported t , so U(t ′; t) ≤ U(t) for all t ′ > t . Finally, IC0 is satisfied under Condition 
SOV because for all t ′ < t ,

U(t ′; t) = Et [v] −Et ′ [max(v − c,0)] − c (A.4)

and U(t) = 0, so U(t ′; t) ≤ U(t) if and only if Condition SOV holds.
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To prove the “only if” part of Proposition 1, we argue by contradiction. Suppose that the seller 
can implement the first-best solution but Condition IEGT is not satisfied. If Condition IEGT is 
violated, there exists a type t ′′ > t ′ such that

Et ′ [max (v − c,0)] > Et ′′ [max (v − c,0)] (A.5)

If type t ′ misrepresents her type as t ′′ at time zero, the expected utility, U
(
t ′′; t ′), she gets is 

equal to

v∫
v

[
vy
(
v, t ′′

)− x
(
v, t ′′

)]
f
(
v|t ′)dv =

v∫
c

vf
(
v|t ′)dv −Et ′

[
x(v, t ′′)

]
,

=
v∫

c

vf
(
v|t ′)dv − p

(
t ′′
)+ cF

(
c|t ′) ,

= Et ′ [max (v, c)] − p
(
t ′′
)
,

> Et ′′ [max (v, c)] − p
(
t ′′
)
,

=
v∫

c

vf
(
v|t ′′)dv − p

(
t ′′
)+ cF

(
c|t ′′) ,

=
v∫

c

vf
(
v|t ′′)dv −Et ′′

[
x(v, t ′′)

]
,

= 0,

where the strict inequality follows from (A.5) (and the fact that Et [max (v, c)] is equal to 
Et [max (v − c,0)] + c), and the last line follows from (A.1). Thus, type t ′ has an incentive 
to misreport her type as t ′′ at time zero and (IC0) is violated, which contradicts the assumption 
that the seller can implement the first-best solution. Hence, Condition IEGT is necessary for 
implementing the first-best solution.

Next, suppose that the seller can implement the first-best solution but Condition SOV is not 
satisfied. Then there exist types t ′′ > t ′ such that

Et ′′ [v] > Et ′ [max (v, c)] . (A.6)

Clearly this implies Et ′′ [v] ≥ c. If type t ′′ misreports her type as t ′, her expected utility U
(
t ′; t ′′)

is

Et ′′
[
vy
(
Et ′′ [v] , t ′

)− x
(
Et ′′ [v] , t ′

)]= Et ′′ [v] − x
(
Et ′′ [v] , t ′

)
, (A.7)

since from Lemma 1, type t ′′ will report her valuation as Et ′′ [v] at time t ′ and we have 
y
(
Et ′′ [v] , t ′

)= 1 because Et ′′ [v] ≥ c. Then,

U
(
t ′; t ′′)= Et ′′ [v] − x

(
Et ′′ [v] , t ′

)
,

= Et ′′ [v] − p
(
t ′
)
,

> Et ′ [max (v, c)] − p
(
t ′
)

=
v∫
vf
(
v|t ′)dv − p

(
t ′
)+ cF

(
c|t ′) ,
c
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=
v∫

c

vf
(
v|t ′)dv −Et ′

[
x
(
v, t ′

)]
.

= 0,

where the strict inequality follows from (A.6) and the last line follows from (A.1). Thus, Condi-
tion SOV is also necessary for implementing the first-best solution. �
Proof of Lemma 5. The following assumption on the distribution of v and t , is clearly implied 
by Assumptions 2 and 3:

Assumption 10. For all α and for all t ,

v∫
α

∂F (v′|t)
∂t

dv′ ≥ 0. (Condition SDEGT)

Condition SDEGT is short for strong decreasing expected gains from trade, and Assump-
tions 2 and 3 each clearly imply Assumption 10. In contrast to the definition of Condition 
IEGT, the inequality reversed (hence decreasing as opposed to increasing). In addition Condi-
tion SDEGT is stated just for all α, while Condition IEGT is stated just for α = c. So Condition 
SDEGT is stronger than just decreasing expected gains from trade. Also, note that Assumption 10
is the same as second-order stochastic dominance if Et [v] is independent of t , but more generally 
is different from second-order stochastic dominance because the range of integration is [α,v], 
not [v, α].

Assumption 10 clearly implies that

v∫
α

[
F(v′|t) − F(v′|t ′)]dv′ ≥ 0,∀v, t, t ′; t > t ′, (A.8)

or Et [max (v − α,0)] ≤ Et ′ [max (v − α,0)].
Note that (IC0) implies that for t > t ′,

U(t) − U(t ′) ≤ U(t) − U(t; t ′), (A.9)

and Lemma 2 and integration by parts implies

U(t) − U(t; t ′) =
v∫

v

u(v, t)
[
f (v|t) − f (v|t ′)]dv

= −
v∫

v

y (v, t)
[
F(v|t) − F(v|t ′)]dv, (A.10)

where the integral exists (for Reiman–Steltjes integration) because F(v|t) − F(v|t ′) is continu-
ous, and y is of bounded variation (y is bounded and weakly increasing in v); see Theorem 30.2 
and Corollary 30.3 on page 229 of Bartle (1975). Using integration by parts again (see Theorem 
29.7 on page 218 of Bartle, 1975),
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−
v∫

v

y (v, t)
[
F(v|t) − F(v|t ′)]dv = − (y(v, t) − y(v, t)

) v∫
v

[
F(v′|t) − F(v′|t ′)]dv′

+
v∫

v

dy(v, t)

v∫
v

[
F(v′|t) − F(v′|t ′)]dv′dv

≤ − (y(v, t) − y(v, t)
) v∫

v

[
F(v′|t) − F(v′|t ′)]dv′

+
v∫

v

dy(v, t)

v∫
v

[
F(v′|t) − F(v′|t ′)]dv′ = 0, (A.11)

where the inequality in the expression above follows from Assumption 10, or more precisely 
(A.8), which implies that

v∫
v

[
F(v′|t) − F(v′|t ′)]dv′ ≤

v∫
v

[
F(v′|t) − F(v′|t ′)]dv′, (A.12)

for all v, and the final expression is zero because

y(v, t) − y(v, t) =
v∫

v

dy(v, t). (A.13)

Equations (A.9), (A.10), (A.11) and (A.12) show that under Assumption 10, (IC0) implies 
that U(t) is monotone decreasing. �
Proof of Lemma 3. The monotonicity assumption implies that U is differentiable at almost 
every t . Restricting attention to those points where U (·) is differentiable, note by (IC0) that, for 
any type t and h > 0,

U (t) − U (t − h) ≤ U(t) − U(t; t − h)

=
v∫

v

[
vy (v, t) − x (v, t)

]
(f (v|t) − f (v|t − h)) dv,

from which it follows that

lim
h↓0

U (t) − U (t − h)

h
≤ lim

h↓0

1

h

v∫
v

[
vy (v, t) − x (v, t)

]
(f (v|t) − f (v|t − h)) dv

=
v∫

v

u (v, t)
∂f (v|t)

∂t
dv

= −
v∫

v

y (v, t)
∂F (v|t)

∂t
dv

where the last equality follows from Lemma 2 and integration by parts. �



758 M. Akan et al. / Journal of Economic Theory 159 (2015) 728–774
Appendix B. Proofs of the results in Section 6

Proof of Lemma 6. To prove that U ′ (t) ≥ 0 for almost every t , we argue by contradiction. 
Suppose U is an expected utility function resulting from an optimal mechanism and there exists 
some interval (τ1, τ2) such that U ′ (t) < 0 for t ∈ (τ1, τ2). We show that types t ∈ (τ1, τ2) strictly 
prefer their own contract to those of any other type. That is, the constraint (IC0) does not bind 
for those types. We first prove that for t ∈ (τ1, τ2),

U(t) > U
(
t ′; t)= Et

[
u(Et [v] , t ′;v, t)

]
for all t ′ < t.

Suppose there exist t ∈ (τ1, τ2) and t ′ < t such that U(t) = Et

[
u(Et [v] , t ′;v, t)

]
. Then, for 

ε > 0 small enough, we obtain

U(t + ε) < U(t) = Et

[
u(Et [v] , t ′;v, t)

]≤ Et+ε

[
u(Et+ε [v] , t ′;v, t + ε)

]
= U

(
t ′; t + ε

)
, (B.1)

implying that (IC0) constraint is violated for type t + ε, which contradicts the supposition that U
is an expected utility function resulting from an optimal mechanism. Note that the strict inequal-
ity in (B.1) is true since U ′ (t) < 0 for t ∈ (τ1, τ2). The weak inequality follows from Assump-
tion 6 and the fact that u 

(·, t ′;v, t
)

is non-decreasing from Lemma 2. Hence, for t ∈ (τ1, τ2), 
U(t) > U

(
t ′; t) for all t ′ < t .

Similarly, we prove that U(t) > U
(
t ′; t) for all t ∈ (τ1, τ2) and t ′ > t . Suppose there exist 

t ∈ (τ1, τ2) and t ′ > t such that U(t) = Et

[
u
(
v, t ′;v, t

)]
. Then, for ε > 0 small enough, we 

obtain

U(t + ε) < U(t) = Et

[
u
(
v, t ′;v, t

)]≤ Et+ε

[
u
(
v, t ′;v, t + ε

)]= U
(
t ′; t + ε

)
,

since U ′ (t) < 0 for t ∈ (τ1, τ2), Assumption 6 is satisfied and u 
(·, t ′;v, t

)
is non-decreasing, 

contradicting U being an expected utility function resulting from an optimal mechanism. Hence, 
for t ∈ (τ1, τ2), U(t) > U

(
t ′; t) for all t ′ > t .

Then we can decrease U (t) slightly over the interval (τ1, τ2) by increasing the payments 
and leaving the allocation unchanged such that (IC0) and (IC0) constraints are still satisfied for 
types (τ1, τ2). This modification also discourages types [0, T ] \ (τ1, τ2) from imitating types 
t ∈ (τ1, τ2 ) since the payments made by types (τ1, τ2) are inflated. Hence, this modification 
of the expected utility function is not only feasible (i.e. satisfies all IC and IR constraints) but 
also strictly improves the objective. Contradiction to U being a utility function resulting from an 
optimal mechanism. Hence, U ′ (t) ≥ 0 for almost every t . This combined with Lemma 3 gives 
(17). �
Preparation for Proof of Proposition 4. Let G0, G1, and G2 be linear functionals of y, and let 
N be a convex set of functions, that characterize the following primal optimization problem:

b∗ = min
y∈N

G0(y) subject to Gi(y) ≤ 0, for i = 1,2. (PP )

Define the Lagrangian L(y, λ) for y ∈ N and λ ∈R
2 as:

L(y,λ) = G0(y) + λ1G1(y) + λ2G2(y), (B.2)

and let

g(λ) = inf L(y,λ). (B.3)

y∈N
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The dual optimization problem of (PP ) is defined as follows:

d∗ = sup
λ

g(λ) subject to λi ≥ 0, for i = 1,2. (PD)

Assumption 11 (Slater’s condition). There exists ỹ ∈ N such that Gi(ỹ) < 0 for i = 1, 2.

The following proposition is used in the proof of Proposition 4. It’s proof is in Appendix C.

Proposition 8. Under Assumption 11 (Slater’s condition), there exist multipliers λ∗ ≥ 0 such that 
y∗ is optimal for (PP ) if and only if y∗ minimizes L(y, λ∗), and 

∑2
i=1 λ∗

i Gi(y) = 0.

Proof of Proposition 4. Let U∗, y∗ (and the associated u∗) be an optimal solution to (P3) with 
the corresponding ex-post utility function denoted by u∗. We will use this solution, which need 
not be deterministic (i.e., y ∈ {0,1}) to demonstrate the existence of an alternative deterministic 
allocation, y, for which U∗, y is a solution to (P3). In particular, the new solution will keep the 
expected utility function U∗ unchanged, while modifying only the allocation probabilities. This 
will demonstrate that for each t , there exists a cut-off point r (t) such that the modified allocation 
probabilities satisfy y (v, t) = 1 if v ≥ r (t) and y (v, t) = 0 if v < r (t).

Without loss of generality, we assume y∗ is not almost everywhere equal to zero and y∗ is not 
almost everywhere equal to one (otherwise y∗ is deterministic except at one end point, since y∗
is non-decreasing, which implies that y∗ is already a deterministic solution). This implies that 
y∗(v, t) ∈ (0, 1) on a subset of 

[
v, v̄

]
that has positive measure.

Define an alternative allocation y (v) as the solution to the following problem, denoted by 
(PA), and note that for notational brevity, we suppress the dependence of y and u on the type, t :

Choose the control y(v) and u0, and hence the ex-post utility u(v) to solve

max
y∈N ,u0

v̄∫
v

(v − c)f (v|t) y (v) dv (PA)

subject to

u
(
v
)= u0,

u̇ (v) = y (v) ,∀v,

v̄∫
v

f (v|t) u (v) dv ≥ U∗ (t) ,

v∫
v

[−∂F (v|t)
∂t

]
y (v) dv ≥

v∫
v

[−∂F (v|t)
∂t

]
y∗ (v) dv,

u (v̄) ≤ u∗ (v̄) ,

where D = {y : y is nondecreasing, and 0 ≤ y(v) ≤ 1,∀v}, and where U∗ (t) and u∗ (v̄, t) are 
taken as constants. Note that the initial condition u0 is a decision variable, and hence, it is a 
“free” variable. It follows from integration by parts that
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v̄∫
v

f (v|t) u (v) dv = u (v̄) −
v̄∫

v

F (v|t) y (v) dv,

so the third constraint can be rewritten as

−
v̄∫

v

F (v|t) y (v) dv ≥ U∗ (t) − u (v̄) . (B.4)

It is crucial to observe that because u0 is a free variable, we can combine the second, third, and 
fifth constraints in (PA) and replace them with the following constraint

−
v̄∫

v

F (v|t) y (v) dv ≥ U∗ (t) − u∗ (v̄) , (B.5)

(PA) can be written as

min
y∈N

G0(y) subject to Gi(y) ≤ 0, for i = 1,2 (̃PA)

where

G0(y) = −
v̄∫

v

(v − c)f (v|t) y (v) dv,

G1(y) =
v̄∫

v

F (v|t) y (v) dv + U∗(t) − u∗(v̄),

and

G2(y) =
v̄∫

v

∂F (v|t)
∂t

y (v) dv −
v∫

v

∂F (v|t)
∂t

y∗ (v) dv.

Note that G0, G1, and G2 are linear functionals, and that N is convex. Also note that As-
sumption 11 (Slater’s condition) is satisfied for y = 0. This is because y∗ is not identically zero, 
so the second term in G2(y) is strictly negative for all y, and for y = 0 the first term is equal to 
zero, so G2(y) < 0 And because y∗ is not identically equal to zero and y∗ is not identically equal 
to one, U∗ < u∗, so G1(y) < 0 for y = 0.

So for every t , either the solution is identically zero, or identically one, or the solution solves 
(̃PA). But by Proposition 8, any solution to (̃PA) must also minimize G0(y) +λ∗

1G1(y) +λ∗
2G2(y)

and satisfy 
∑2

i=1 λ∗
i Gi(y) = 0 for some λ∗.

So if y is not identically zero or identically one, then there exist multipliers λ1, λ2 ≥ 0 such 
that any solution y(v) solves

max
y∈N

v∫ (
(v − c)f (v|t) − λ1F (v|t) − λ2

∂F (v|t)
∂t

)
y(v)dv, (B.6)
v
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but this clearly has a deterministic solution. As observed in Section 5, the firm is maximizing 
a linear objective over a closed convex subset of a linear space of functions, and the maximal 
value must be achieved at an extreme point of the feasible set. Here the extreme point in the set 
of nondecreasing functions from R → [0, 1] is a function that jumps from 0 to 1 at ope point, 
that is a deterministic solution. So for each t , there exists a cutoff point r(t) such that y(v, t) = 1
if v ≥ r(t) and y(v, t) = 0 otherwise (i.e., v < r(t)).

As argued above, these allocation probabilities, y, also constitute an optimal solution to (PA). 
Also note that for each solution to (PA), since the initial value, u0, is free, we can decrease u0 and 
make the constraint (B.4) bind. Hence, without loss of generality we will consider only solutions 
in which (B.4) binds.

For type t , the modified solution will have U∗ (t) as the expected utility and y (v, t) as the 
allocation. (The modified ex-post utility function u (v, t) is also derived from the above optimal 
control problem.) This modified solution is clearly of the desired form and weakly improves the 
objective of (P3). To establish that it is indeed an optimal solution to (P3), we only need to check 
the constraint (ICT

0 ). To check this, note that u (v̄, t) ≤ u∗ (v̄, t) (for all t ) by the last constraint 
of (PA) and that ∂u (v, t) /∂v = 1 for v such that u (v, t) ≥ 0, where the latter assertion follows 
since u 

(
v, t
) ≤ 0 for all t . To see why u 

(
v, t
) ≤ 0 for all t , notice that if u 

(
v
)

> 0 and the 
constraint that

v̄∫
v

f (v|t) u (v) dv ≥ U∗ (t)

does not bind in problem (PA), we can decrease u 
(
v
)

and increase the objective of the original 
mechanism design problem. If u 

(
v
)
> 0 and the constraint that

v̄∫
v

f (v|t) u (v) dv ≥ U∗ (t)

binds, then it should be that U∗ (t) > 0. Then, we should have U∗
(
t ′
)
> 0 for all t ′ < t as any 

type t ′ < t could get a strictly positive surplus by pretending to be type t . As U∗ is increasing, 
this would imply that U∗ (t) > 0 for all t , in which case decreasing u 

(
v, t
)

uniformly for all 
types would increase the profits, which contradicts u(v, t) > 0.

Since u 
(
v, t
) ≤ 0 for all t , it must be that u (v, t) ≤ u∗ (v, t) for all v such that u (v, t) ≥ 0. 

The constraint (ICT
0 ) can be rewritten in a more transparent format as follows:

U∗ (T ) ≥ max
t

{u (ET [v] , t)} , (B.7)

where we obtained (B.7) by rewriting the constraint (ICT
0 ) and using the fact that type T reports 

his valuation as ET [v] and gets a utility of u (ET [v] , t) if he pretends to be type t . Then (ICT
0 )

holds trivially if u (ET [v] , t) < 0 for all t since U∗ (T ) ≥ 0. Suppose that there exists t ∈ [0, T ]
such that u (ET [v] , t) ≥ 0. The constraint (ICT

0 ) still holds since

U∗ (T ) ≥ max
t

{u∗ (ET [v] , t)} , (B.8)

≥ max
t∈{τ :u∗(ET [v],τ )≥0}

{u∗ (ET [v] , t)} , (B.9)

≥ max {u (ET [v] , t)} , (B.10)

t∈{τ :u∗(ET [v],τ )≥0}
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≥ max
t∈{τ :u(ET [v],τ )≥0}

{u (ET [v] , t)} , (B.11)

= max
t

{u (ET [v] , t)} , (B.12)

where the inequality in the second line is true since maximization is carried out on a smaller 
set than the first line. The inequalities in (B.10) and (B.11) follow from the fact that u (v, t) ≤
u∗ (v, t) for all v such that u (v, t) ≥ 0. Finally, (B.12) is true since type T would not find it 
profitable to deviate to any type t such that u (ET [v] , t) < 0. This proves that the modified 
solution satisfies (ICT

0 ) and completes the first part of the proof.
For the remainder of the proof, we will use U, y to denote the optimal solution of (P3) where 

y (v, t) ∈ {0,1} for almost every v, t . To establish the second part of the proof first note that 
U (0) = 0; otherwise we can decrease U uniformly over [0, T ] and the objective improves. Next, 
we prove that we must have

U ′ (t) ∈

⎧⎪⎨⎪⎩0,−
v∫

r(t)

∂F (v|t)
∂t

dv

⎫⎪⎬⎪⎭ for almost every t . (B.13)

Lemma 3 and Lemma 6 and the first half of the proof imply that

0 ≤ U ′ (t) ≤ −
v∫

r(t)

∂F (v|t)
∂t

dv for almost every t .

Note that using integration by parts and recalling that U (0) = 0, we can rewrite the objective 
function as follows:∫

v,t

f (v, t)
[
x (v, t) − cy (v, t)

]
dvdt

=
∫
v,t

f (v, t) (v − c) y (v, t) dvdt −
t̄∫

0

(1 − H (t)) dU (t) (B.14)

To prove (B.13), we argue by contradiction. Suppose that instead there exists some interval 
[τ1, τ2] such that

0 < U ′ (t) < −
v∫

r(t)

∂F (v|t)
∂t

dv for t ∈ [τ1, τ2] .

Then the objective function can be improved by replacing U with Û which is the same 
except that Û ′ (t) = 0 for t ∈ [τ1, τ1 + ε] for ε > 0 sufficiently small and appropriately in-
creasing Û ′ (t) (which can be done so that Û(τ2) = U(τ2) since U ′ (t) < − 

∫ v

r(t)
∂F (v|t)

∂t
dv for 

t ∈ [τ1, τ2]). So 
∫ τ2
τ1

dÛ(t) = ∫ τ2
τ1

dU(t). This modification improves the objective in (B.14)∫ τ2
τ1

(1 − H (t)) dÛ(t) = (1 −H(τ2))(U(τ2) −U(τ1)) <
∫ τ2
τ1

(1 − H (t)) dU(t), which is because 
1 −H(t) is decreasing. And it can be achieved by changing u 

(
v, t
)

on the interval [τ1, τ2] appro-
priately so that y (v, t) remains the same. Then, the constraints of (P3) including (ICT

0 ) still hold 
since U (T ) remains unchanged and U (t) strictly decreases for t ∈ (τ1, τ2), while U (t) does not 
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change elsewhere, and hence type T finds the deviation to types (τ1, τ2) strictly less profitable. 
Thus, (B.13) follows.

Finally, we show that if U ′ (t) > 0 for almost every t ∈ [t ′, t ′ + ε1
]

for some t ′ and ε1 > 0, 
then U ′ (t) > 0 for almost every t ≥ t ′. Suppose not, i.e., there exists an interval [τ1, τ2] ⊂ [t ′, T ]
over which U ′ (t) = 0. Then, following the reasoning in the preceding paragraph, we can modify 
U such that U ′ (t) = 0 for t ∈ [t ′, t ′ + ε2

]
for some 0 < ε2 < ε1 while keeping U (τ2) the same 

as before, which improves the objective function and hence, leads to a contradiction.
Define τ ∈ [0, T ] as the essential infimum of types for which U ′ (t) > 0. Formally,

τ = inf
{
t ′ ∈ [0, T ] : U ′ (t) > 0 for almost every t ∈ [t ′, t ′ + ε) for some ε > 0

}
,

where τ = T if U ′ (t) = 0 for almost every t and τ = 0 if U ′ (t) > 0 for almost every t . Then, we 
have U ′ (t) = 0 for almost every t ≤ τ , and

U ′ (t) = −
v∫

r(t)

∂F (v|t)
∂t

dv for almost every t > τ.

The result follows from this since U is Lipschitz continuous (and hence absolutely continu-
ous). �
Proof of Proposition 5. It follows from Lemma 2 and Proposition 4 that

y (v, t) =
{

1 if v ≥ r (t) ,

0 if v < r (t) ,
and

∂u (v, t)

∂t
=
{

1 if v ≥ r (t) ,

0 if v < r (t) ,
(B.15)

from which it follows that

x (v, t) =
{

x (v̄, t) if v ≥ r (t) ,

x
(
v, t
)

if v < r (t) ,
(B.16)

where x
(
v, t
) = −u 

(
v, t
)

and x (v̄, t) = v̄ − u (v̄, t). Moreover, it follows from (B.15) that 
u (v̄, t) − u 

(
v, t
) = v̄ − r (t). Thus, x (v̄, t) = x

(
v, t
)+ r (t). In other words, defining p (t) =

x (v̄, t), we have

x (v, t) =
{

p (t) if v ≥ r (t) ,

p (t) − r (t) if v < r (t) .
(B.17)

Then, for all t ,

U (t) =
v∫

v

u(v, t)f (v|t)dv =
v̄∫

r(t)

vf (v|t) dv − p (t) + r (t)F (r (t) |t) .

Solving for p (t), we obtain

p (t) = Et [max {v, r (t)}] − U (t) . (B.18)

Recall that U (t;T ) = Et [u (ET [v] , t;v,T )]. That is, U (t;T ) = ET [v]y (ET [v] , t) −
x (ET [v] , t). It follows from equations (B.17) and (B.18) that

x (ET [v] , t) = Et [max {v, r (t)}] − U (t) − r (t)1{E [v] − r(t)<0},
T
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and clearly (B.15) implies y (ET [v] , t) = 1{ET [v] − r(t)≥0}, so it follows that

U (t;T ) = (ET [v] − r (t))1{ET [v] − r(t)≥0} + U (t) −
v∫

r(t)

(v − r (t)) f (v|t) dv. �

Preparation for Proof of Proposition 6. The following lemma facilitates the proof of Proposi-
tion 6.

Lemma 7. If r(t) is decreasing over [τ, T ], then (IC
��

T
0 ) is slack for all t ′ ∈ [τ, T ).

Proof of Lemma 7. To see this, recall that using Proposition 4 to define U(T ) and U(t ′), (IC
��

T
0 )

can be written as

−
T∫

τ

v∫
r(t)

∂F (v|t)
∂t

dvdt −ET [v] + r
(
t ′
)+ t̂∫

τ

v∫
r(t)

∂F (v|t)
∂t

dvdt

+
v̄∫

r(t ′)

(v − r(t ′))f (v|t ′)dv ≥ 0, (B.19)

for all t̂ ∈ [τ, T ). The left hand side can be rewritten as

−
T∫

t̂

v∫
r(t)

∂F (v|t)
∂t

dvdt −
v̄∫

v

(v − r(t̂))f (v|T )dv +
v̄∫

r(t̂)

(v − r(t̂))f (v|t̂ )dv

or

−
T∫

t̂

v∫
r(t)

∂F (v|t)
∂t

dvdt −
v̄∫

r(t̂)

(v − r(t̂))(f (v|T ) − f (v|t̂ ))dv −
r(t̂)∫
v

(v − r(t̂))f (v|T )dv.

Integrating the second term by parts, this becomes

−
T∫

t̂

v∫
r(t)

∂F (v|t)
∂t

dvdt +
v̄∫

r(t̂)

[F(v|T ) − F(v|t̂ )]dv −
r(t̂)∫
v

(v − r(t̂))f (v|T )dv

or

−
T∫

t̂

v∫
r(t)

∂F (v|t)
∂t

dvdt +
T∫

t̂

v∫
r(t̂)

∂F (v|t)
∂t

dvdt −
r(t̂)∫
v

(v − r(t̂))f (v|T )dv > 0,

where the first two terms on the right are positive since r(t) ≤ r(t̂) for all t ∈ (t̂ , T ], and the third 
term is strictly positive since the integrand is non-positive, so the constraint, equation (B.19), is 
slack for all t̂ ∈ [τ, T ). �
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Proof of Proposition 6. We further relax the firm’s problem, (P4), by assuming that the con-
straint does not bind for all t ∈ [τ, T ], so U(t) = 0 by Proposition 4. We solve the relaxed 
problem and show that the constraint binds for all t ∈ [0, σ ] ⊂ [0, τ ] for some σ ≤ τ . We then 
characterize the optimal function r(t) on the three intervals, [0, σ ], [σ, τ ], and [τ, T ], as well 
as the optimal τ , and prove that 0 < τ < T . Finally, we verify that relaxing the constraint was 
without loss of generality, that is, we verify that r(t) is decreasing on [τ, T ), which by Lemma 7
implies the constraint does not bind.

It is useful to divide the support [0, T ] into two intervals and give r(t) a different name, r1
and r2, on [0, τ ] and on [τ, T ] respectively.

So using Proposition 4, U(t) = 0 for t ∈ [0, τ ] and the firm’s problem can be written as

max
{τ∈[0,T ],r1(t),r2(t)}

τ∫
0

v̄∫
r1(t)

f (v, t)(v − c)dvdt +
T∫

τ

v̄∫
r2(t)

f (v, t)φ(v, t)dvdt (B.20)

subject to

−
T∫

τ

v∫
r2(t)

∂F (v|t)
∂t

dvdt ≥ ET [v] − r1(t
′) −

v̄∫
r1(t

′)

(v − r1(t
′))f (v|t ′)dv,∀t ′ ∈ [0, τ ),

where

φ(v, t) = v − c + 1 − H(t)

h(t)

∂F (v|t) /∂t

f (v|t) .

Note that relaxing the constraint is without loss of generality by Lemma 7 as long as the uncon-
strained solution satisfies the condition that r∗

2 (t) is decreasing.
Given any τ and r2, unconstrained maximization implies that r1(t) = c. We now show that 

there exists a cutoff σ ∈ [0, τ ] such that the constraint binds if and only if t ∈ [0, σ ]. This cutoff, 
σ ∗(τ, r2), is defined by

−
T∫

τ

v∫
r2(t)

∂F (v|t)
∂t

dvdt = ET [v] −
v̄∫

c

(v − c)f (v|σ ∗(τ, r2))dv − c,

when a solution exists in the interval [0, τ ], and defined by σ ∗(τ, r2) = 0 when

−
T∫

τ

v∫
r2(t)

∂F (v|t)
∂t

dvdt > ET [v] −
v̄∫

c

(v − c)f (v|0)dv − c,

and σ ∗(τ, r2) = τ when

−
T∫

τ

v∫
r2(t)

∂F (v|t)
∂t

dvdt < ET [v] −
v̄∫

c

(v − c)f (v|τ)dv − c.

Clearly σ ∗(τ, r2) is unique, given τ and r2, since Assumption 6 (Forward FOSD) implies that ∫ v̄

c
(v − c)f (v|t) dv = v̄ − c − ∫ v̄

c
F (v|t) dv is strictly increasing in t . It follows that for all 

t ∈ (σ ∗(τ, r2), τ), (IC
��

T
0 ) does not bind and that r1(t) = r∗

1 (t; σ ∗(τ, r2)) = c. Moreover, for all 
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t ≤ σ ∗(τ, r2), (IC��

T
0 ) binds and r1(t) = r∗

1 (t; σ ∗(τ, r2)) is uniquely defined by

ET [v] −
v̄∫

r∗
1 (t;σ ∗(τ,r2))

(v − r∗
1 (t;σ ∗(τ, r2)))f (v|t) dv − r∗

1 (t;σ ∗(τ, r2))

= ET [v] −
v̄∫

c

(v − c)f (v|σ ∗(τ, r2))dv − c, (B.21)

since 
∫ v̄

x
(v − x)f (x|t) + x is strictly increasing in x.

Using the implicit function theorem and the definition of σ ∗(τ, r2), we have

∂σ ∗(τ, r2 + εz)

∂ε

∣∣∣∣
ε=0

= −
⎡⎣ v̄∫

c

(v − c)
∂f (v|σ ∗(τ, r2))

∂t
dv

⎤⎦−1 T∫
τ

∂F (r2(t)|t)
∂t

z(t)dt, (B.22)

and

∂σ ∗(τ, r2)

∂τ
= −

⎡⎣ v̄∫
c

(v − c)
∂f (v|σ ∗(τ, r2))

∂t
dv

⎤⎦−1 T∫
r2(τ )

∂F (v|τ)

∂t
dv > 0, (B.23)

for all τ and r2 such that σ ∗(τ, r2) ∈ (0, τ). When σ ∗(τ, r2) = 0, then both derivatives are 
zero (i.e., ∂σ ∗(τ, r2)/∂τ = 0 and ∂σ ∗(τ, r2 + εz)/∂ε|ε=0 = 0). And when σ ∗(τ, r2) = τ , then 
∂σ ∗(τ, r2)/∂τ = 1 and ∂σ ∗(τ, r2 + εz)/∂ε|ε=0 = 0.

Using the implicit function theorem and the definition of r∗
1 (t; σ ∗(τ, r2)) in (B.21) we have

∂r∗
1 (t;σ)

∂σ
=
∫ v̄

c
(v − c)

∂f (v|σ)
∂t

dv

F (r∗
1 (t;σ)|t)

which is clearly positive, and

∂r∗
1 (t;σ)

∂t
= −

∫ v̄

r∗
1 (t;σ)

(v − r∗
1 (t;σ))

∂f (v|t)
∂t

dv

F (r∗
1 (t;σ)|t)

which is clearly negative, so r∗
1 (t) is strictly decreasing on [0, σ ], and r∗

1 (t) = c on [σ, τ ], so 
r∗

1 (t) is weakly decreasing on [0, τ ].
Substituting r∗

1 (t; σ ∗(τ, r2)) into the objective function, the firm’s problem can be written as 
the following unconstrained calculus of variations problem:

max
{τ,r2(t)}

σ ∗(τ,r2)∫
0

v̄∫
r∗
1 (t;σ ∗(τ,r2))

f (v, t)(v − c)dvdt +
τ∫

σ ∗(τ,r2)

v̄∫
c

f (v, t)(v − c)dvdt

+
T∫

τ

v̄∫
f (v, t)φ(v, t)dvdt. (B.24)
r2(t)
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Using the fact that r∗
1 (σ ∗(τ, r2); σ ∗(τ, r2)) = c, the first-order conditions are

−
σ ∗(τ,r2)∫

0

f (r∗
1 (t ′;σ ∗(τ, r2)), t

′)(r∗
1 (t ′;σ ∗(τ, r2)) − c)

× ∂r∗
1 (t ′;σ ∗(τ, r2))

∂σ

∂σ ∗(τ, r2 + εz)

∂ε

∣∣∣∣
ε=0

dt ′

−
T∫

τ

f (r2(t), t)φ(r2(t), t)z(t)dt = 0,∀z(t),

and

−
σ ∗(τ,r2)∫

0

f (r∗
1 (t ′;σ ∗(τ, r2)), t

′)(r∗
1 (t ′;σ ∗(τ, r2)) − c)

∂r∗
1 (t ′;σ ∗(τ, r2))

∂σ

∂σ ∗(τ, r2)

∂τ
dt ′

+
v̄∫

c

(v − c)f (v, τ )dv −
v̄∫

r2(τ )

φ(v, τ )f (v, τ )dv = 0.

Note that the first first-order condition implies that if σ ∗(τ, r2) = 0, the τ = 0, so r(t) = c and 
there is no distortion, and the firm extracts all of the surplus, which contradicts Assumption 7. 
So σ ∗(τ, r2) > 0 by Assumption 7.

The first-order conditions imply that 0 < τ ∗ < T . To see this, first notice that τ ∗ = 0 implies 
that σ ∗(τ, r2) = 0, which we just showed implies τ = T which is a contradiction. Second, notice 
that τ ∗ = T implies r2(τ ) = c and 1 −H(τ) = 0, so the 2nd and 3rd terms in second condition are 
zero and hence the second first-order condition is strictly negative, unless σ ∗(τ, r2) = 0, which 
again is impossible under Assumption 7, so clearly 0 < τ ∗ < T .

So using (B.22) and (B.23) the first-order conditions can be written as:


(τ, r2)

T∫
τ

∂F (r2(t)|t)
∂t

z(t)dt −
T∫

τ

f (r2(t), t)φ(r2(t), t)z(t)dt = 0,∀z(t),

and


(τ, r2)

v̄∫
r2(τ )

∂F (v|τ)

∂t
dv +

v̄∫
c

(v − c)f (v, τ )dv −
v̄∫

r2(τ )

φ(v, τ )f (v, τ )dv = 0,

where


(τ, r2) =
σ ∗(τ,r2)∫

0

f (r∗
1 (t ′;σ ∗(τ, r2)), t

′)(r∗
1 (t ′;σ ∗(τ, r2)) − c)

F (r∗
1 (t ′;σ ∗(τ, r2))|t ′) dt ′ > 0.

Substituting for φ(v, t), we can rewrite the first first-order-condition as

−
T∫

f (r2(t), t)

[
r2(t) − c + 1 − H(t) − 
(τ, r2)

h(t)

∂F (r2(t)|t)/∂t

f (r2(t)|t)
]

z(t)dt = 0,∀z(t),
τ
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which, using f (v, t) = f (v|t)h(t), becomes simply �(r2(t), t; τ, r2) = 0 for all t ∈ [τ, T ] where

�(v, t; τ, r2) = v − c + (1 − H(t) − 
(τ, r2))
∂F (v|t) /∂t

f (v, t)
. (B.25)

Substituting for φ(v, τ), and using f (v, t) = f (v|t)h(t), we can rewrite the second first-
order-condition as


(τ, r2)

v̄∫
r2(τ )

∂F (v|τ)

∂t
dv =

v̄∫
r2(τ )

(1 − H(τ))
∂F (v|τ)

∂t
dv +

c∫
r2(τ )

(v − c)f (v, τ )dv,

or

1 − H(τ) − 
(τ, r2) = −
⎡⎢⎣ v̄∫
r2(τ )

∂F (v|τ)

∂t
dv

⎤⎥⎦
−1

c∫
r2(τ )

(v − c)f (v, τ )dv,

and since 
∫ c

r2(τ )
(v − c)f (v, τ)dv ≤ 0 and ∂F (v|τ)/∂t < 0, it follows that 1 − H(τ) −


(τ, r2) ≤ 0. Also, note that 1 − H(τ) − 
(τ, r2) ≤ 0 implies 1 − H(t) − 
(τ, r2) < 0 for 
all t > τ . Using (B.25), clearly, 1 − H(τ) − 
(τ, r2) ≤ 0 combined with �(r2(τ ), τ ; τ, r2) = 0
implies that r∗

2 (τ ) ≤ c.
We now prove that dr∗

2 (t)/dt < 0. The equation defining r∗
2 (t) is �(r2(t), t; τ, r2) = 0, so 

using the implicit function theorem,

dr2(t)

dt
= − �t(r2(t), t; τ, r2)

�v(r2(t), t; τ, r2)
(B.26)

and using f (v, t) = f (v|t)h(t) to cancel the h(t) in the second term,

�t(r2(t), t; τ, r2) = (1 − H(t) − 
(τ, r2))
∂
[

∂F (v|t)/∂t
f (v,t)

]
∂t

∣∣∣∣∣∣
v=r2(t)

− ∂F (r2(t)|t)/∂t

f (r2(t)|t) ,

and

�v(r2(t), t; τ, r2) = 1 + (1 − H(t) − 
(τ, r2))
∂
[

∂F (v|t)/∂t
f (v,t)

]
∂v

∣∣∣∣∣∣
v=r2(t)

.

Under Assumption 9, the denominator in (B.26) is positive. Under Assumption 8, the first term in 
the numerator of (B.26) is positive, and under Assumption 6 (FOSD) the second term is positive, 
so the numerator of (B.26) is positive, and it follows that dr∗

2 (t)/dt < 0, and more generally that 
r(t) is decreasing on [0, T ], so from Lemma 7, it follows that relaxing the incentive constraint 
was without loss of generality.

Finally, it must be true that r2(τ ) = c. We prove this by contradiction. Suppose instead that 
r2(τ ) < c. Then there exists an ε, and a new mechanism p̂(t), r̂1(t) and r̂2(t), which satisfies 
r̂1(t) = r1(t), ∀t ∈ [0, τ), r̂2(t) = r2(t), ∀t ∈ [τ + ε, T ], and r̂2(t) = c, ∀t ∈ [τ, τ + ε), which 
earns strictly higher profits. The price of the new mechanism, p̂(t), is chosen so that Û is con-
tinuous, and so that Û(τ + ε) = U(τ + ε), but also so that Û increases more slowly and over a 
longer interval than U . Specifically, there exists a ν < τ , such that we define Û(ν) = 0 and
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Û ′(t) = −
v∫

c

∂F (v|t)
∂t

dv (B.27)

for all t ∈ [ν, τ + ε], while U(t) = 0 for t ∈ [ν, τ ] and

U ′(t) = −
v∫

r1(t)

∂F (v|t)
∂t

dv, (B.28)

so Û ′(t) < U ′(t) for t ∈ [τ, τ + ε]. This implies that incentive compatibility is unchanged. Con-
sumer surplus increases by

τ+ε∫
ν

(
Û (t) − U(t)

)
h(t)dt, (B.29)

but total surplus increases by

τ+ε∫
τ

c∫
r2(t)

(c − v)f (v, t)dvdt. (B.30)

Since ν → τ , and Û(t) − U(t) → 0, as ε → 0, for ε sufficiently small, producer surplus, or 
profit, must be increasing. �
Proof of Proposition 7. Since the cutoff points {r (t) : 0 ≤ t ≤ T } are optimal for (P4), 
which in turn is more relaxed than the original screening problem, it suffices to check that 
{(p (t) , r (t)) : 0 ≤ t ≤ T } satisfy the constraints of the original problem.

Since U (t) ≥ 0 for all t (see Proposition 6) the individual rationality constraints (IR) are satis-
fied. The feasibility constraints (F) are readily satisfied. Moreover, from Lemma 2, the incentive 
compatibility constraint (ĨCt ) of (P4) and the incentive compatibility constraint (ICt ) of the orig-
inal problem are equivalent and hence the constraint (ICt ) of the original problem is satisfied by 
the payment and allocation scheme given by

x (v, t) =
{

p (t) − r(t) if v < r (t) ,

p (t) if v ≥ r (t) ,
and y (v, t) =

{
0 if v < r (t) ,

1 if v ≥ r (t) .

The incentive compatibility constraints (IC0) regarding downward deviations were ignored 
for all types but the highest type T in (P4). We next show that the menu of contracts 
{(p (t) , r (t)) : 0 ≤ t ≤ T } satisfy (IC0) of the original screening problem. For t > t ′, U

(
t ′; t)≥ 0

only if Et [v] ≥ r (t), in which case

U
(
t ′; t)= Et [v] + U

(
t ′
)− v∫

r(t ′)

(
v − r

(
t ′
))

f
(
v|t ′)dv − r

(
t ′
)
,

and we have

∂U
(
t ′; t)

∂t
= dEt [v]

dt
=

v̄∫
v

v
∂f (v|t)

∂t
dv = −

v̄∫
v

∂F (v|t)
∂t

dv > −
v̄∫

∂F (v|t)
∂t

dv ≥ U ′ (t) .
r(t)
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If U
(
t ′;T )≤ U (T ), then

U
(
t ′;T )− T∫

t

∂U
(
t ′; s)

∂s
ds ≤ U (T ) −

T∫
t

U ′ (s) ds,

and U
(
t ′; t)≤ U (t) for all t > t ′, so (IC0) is satisfied.

Finally, we show that the incentive compatibility constraints (IC0) regarding upward devia-
tions, which were ignored in problems (P3) and (P4), are satisfied. For t ′ > t ,

U
(
t ′; t)=

v∫
r(t ′)

(
v − r

(
t ′
))

f (v|t) dv − p
(
t ′
)+ r

(
t ′
)
.

We can rewrite this as

U
(
t ′; t)=

v∫
r(t ′)

(
v − r

(
t ′
))

f (v|t) dv + U
(
t ′
)− v∫

r(t ′)

(
v − r

(
t ′
))

f
(
v|t ′)dv,

=
v∫

r(t ′)

(
v − r

(
t ′
)) [

f (v|t) − f
(
v|t ′)]dv + U

(
t ′
)
.

So

∂U
(
t ′; t)

∂t ′
= U ′ (t ′)− r ′ (t ′) v∫

r(t ′)

[
f (v|t) − f

(
v|t ′)]dv +

v∫
r(t ′)

(
v − r

(
t ′
)) ∂f

(
v|t ′)

∂t ′
dv

= U ′ (t ′)− r ′ (t ′) [−F
(
r
(
t ′
) |t)+ F

(
r
(
t ′
) |t ′)]+ v∫

r(t ′)

∂F
(
v|t ′)

∂t ′
dv

≤ 0,

since r ′ (t ′)≤ 0 and U ′ (t ′)≤ − 
∫ v

r(t ′)
∂F
(
v|t ′)

∂t ′ dv, and since Assumption 6 holds. Integrating, we 

get U
(
t ′; t)≤ U (t) for all t ′ > t since U (t; t) = U (t), which shows that (IC0) is satisfied.

Hence, {(p (t) , r (t)) : 0 ≤ t ≤ T } is optimal for (P1). �
Proof of Corollary 1. For all t ,

U (t) =
v̄∫

r(t)

vf (v|t) dv − p (t) (1 − F (r (t) |t)) + (p (t) − r (t))F (r (t) |t) . (B.31)

Solving for p (t) in (B.31) we get for all t ,

p (t) = Et [v;v ≥ r (t)] + r (t)F (r (t) |t) − U (t) = Et [max {v, r (t)}] − U (t) . (B.32)

Since type T is indifferent between her contract and the contract offer all types t ∈ [0, σ ] and 
U (t;T ) = ET [v] − Et [max {v, c}] for t ≤ σ by Proposition 5, Et [max {v, r (t)}] is constant as 
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a function of t over the interval [0, σ ]. Moreover, U (t) = 0 for t ≤ σ and hence, p′ (t) = 0 for 
t ≤ σ . Since r (t) = c with U (t) = 0 for [σ, τ), from Assumption 6 (FOSD) we obtain

p′ (t) = d

dt
Et [max {v, c}] = −

v̄∫
c

∂F (v|t)
∂t

dv > 0 for t ∈ [σ, τ).

For t ≥ τ , differentiating (B.32) and using Proposition 4 we get

p′ (t) = d

dt
Et [max {v, r (t)}] − U ′ (t) ,

=
v̄∫

r(t)

v
∂f (v|t)

∂t
dv + r ′ (t)F (r (t) |t) +

v̄∫
r(t)

∂F (v|t)
∂t

dv + r (t)
∂F (r (t) |t)

∂t
,

=
v̄∫

r(t)

v
∂f (v|t)

∂t
dv + r ′ (t)F (r (t) |t) + r (t)

∂F (r (t) |t)
∂t

− ∂F (r (t) |t)
∂t

r (t) −
v̄∫

r(t)

∂f (v|t)
∂t

vdv,

= r ′ (t)F (r (t) |t) ,

and hence p′ (t) ≤ 0 since r ′ (t) ≤ 0 for t ≥ τ .
Notice that the effective price p (t) − r (t)F (r (t) |t) is increasing for all t since r ′ (t) ≤ 0 for 

almost every t and

d

dt

[
p (t) − r (t)F (r (t) |t)]= p′ (t) − r ′ (t)F (r (t) |t) − r (t) r ′ (t) f (r (t) |t)

− r (t)
∂F (r (t) |t)

∂t

≥ −r (t) r ′ (t) f (r (t) |t) − r (t)
∂F (r (t) |t)

∂t
.

Next, observe that p (T ) ≥ p (σ). To see this, recall that highest type is indifferent be-
tween her contract and that of type σ , thus, U (T ) = ET [v] − p (σ). From (B.32), U (T ) =
ET [max {v, r (T )}] − p (T ) and hence,

p (T ) − p (σ) = ET [max {v, r (T )}] −ET [v] ≥ 0,

where the inequality is strict if r (T ) > v. Finally, if r (τ ) < c, then there is a downward jump 
in prices at τ , i.e. p (τ) < p (τ−). To see this note that, U (t) = 0 for t ≤ τ and r (τ ) < c for 
σ ≤ t < τ whereas r (τ ) < c, and hence p (τ) < p (τ−) since by assumption ∂f (v|t) /∂t is 
continuous in v and t . �
Appendix C. Proof of Proposition 8

The proof consists of a series of claims.
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Claim 1 (Weak duality). The minimized value of (PD) is less than or equal to the minimized value 
of (PP ), or d∗ ≤ b∗.

Proof. Consider any ŷ that is feasible for (PP ) (that is, satisfies ŷ ∈ N and Gi(ŷ) ≤ 0 for i =
1, 2) and any λ ≥ 0. Then clearly

L(ŷ, λ) ≤ G0(ŷ),

from which is follows that

g(λ) = inf
y∈N

L(y,λ) ≤ L(ŷ, λ) ≤ G0(ŷ).

Taking the supremum of g(λ) over λ ≥ 0, and infimum of G0(ŷ) over ŷ ∈N gives the result. �
Our second claim uses Assumption 11 and the following theorem:

Theorem 1. (See Rockafellar, 1970, Theorem 11.3.) Let C1 and C2 be two convex sets. In order 
that there exists a hyperplane separating C1 and C2 properly, it is necessary and sufficient that 
the relative interior of C1 and the relative interior of C2 have no point in common.

Note that we apply this theorem using just the interior of C1 and C2 and not the relative 
interior (since the sets have the same dimensionality as the space in which they are contained).

Claim 2 (Strong duality). The problem (PP ) and its dual (PD) attain the same optimum, or 
b∗ = d∗.

Proof. Define

S =
{
(G1(y),G2(y),G0(y)) ∈ R

3|y ∈N
}

,

and define the closely related set A ⊂R
3:

A =
{
(u1, u2, t) ∈ R

3|∃y ∈ N such that Gi(y) ≤ ui, for i = 1,2, and G0 ≤ t
}

.

The set A can be viewed as the epigraph form of S, since A includes all points in S and points 
that are worse, i.e., those with higher objective values or higher inequality constraint function 
values.

Note that b∗ = inf {t |(0,0, t) ∈ A}. Also note that A is a convex set because Gi(y) for i =
0, 1, 2 are linear functionals, so if (u1, u2, t) and (ũ1, ũ2, ̃t) are both in A, and if y and ỹ are the 
associated values from the definition of A, then for all α ∈ (0, 1), (ǔ1, ǔ2, ̌t) = α(u1, u2, t) + (1 −
α)(ũ1, ũ2, ̃t) is in A, because Gi(αy + (1 − α)ỹ) ≤ ǔi for i = 1, 2, and G0(αy + (1 − α)ỹ) ≤ ť .

Define another set B = {(0,0, s) ∈R
3|s < b∗}, and note that B is convex and that A ∩B = ∅, 

so that we can apply the separating hyperplane theorem (Theorem 11.3 in Rockafellar, 1970). 
This theorem implies that there exists (λ̃1, ̃λ2, μ) �= 0 and β such that

(u1, u2, t) ∈ A ⇒ λ̃1u1 + λ̃2u2 + μt ≥ β, (C.1)

and

(u1, u2, t) ∈ B ⇒ λ̃1u1 + λ̃2u2 + μt ≤ β. (C.2)
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Equation (C.1) implies (λ̃1 ≥ 0, λ̃2 ≥ 0, and μ ≥ 0 since otherwise the values of λ̃1u1 + λ̃2u2 +μt

are unbounded below, so no β exists satisfying (C.1). Equation (C.2) implies simply that μt ≤ β

for all t ≤ b∗, hence μb∗ ≤ α. So equations (C.1) and (C.2) together imply that

λ̃1G1(y) + λ̃2G2(y) + μG0(y) ≥ β ≥ μb∗. (C.3)

Next we rule out μ = 0 by contradiction. Using (C.3), μ = 0 implies that for any y ∈ N , 
λ̃1G1(y) + λ̃2G2(y) ≥ 0, but this contradicts Assumption 11, which states that there exists ỹ
such that Gi(ỹ) < 0 for i = 1, 2.

Therefore μ > 0, and dividing (C.3) by μ gives

L(y, λ̃/μ) ≥ b∗,∀y ∈N , (C.4)

from which is follows that

g(λ̃/μ) = inf
y∈N

L(y, λ̃/μ) ≥ b∗.

or g(λ∗) ≥ b∗ where λ∗ = λ̃/μ. And since we have already shown in Claim 1 that g(λ∗) ≤ b∗, it 
follows that g(λ∗) = b∗, and strong duality holds. �
Claim 3. Claim 2 (Strong duality) implies that there exists λ∗ ∈R

2 such that

d∗ = inf
y∈N

{
G0(y) +

2∑
i=1

λ∗
i Gi(y)

}
= sup

λ

g(λ) subject to λi ≥ 0, for i = 1,2. (C.5)

Claim 4. Claim 2 implies that there exists λ∗ ≥ 0 such that y∗ is optimal for (PP ) if and only if 
y∗ minimizes L(y, λ∗) and 

∑2
i=1 λ∗uiGi(y) = 0.

Proof. If y∗ is optimal for (PP ), then from Claims 2 and 3

b∗ = d∗ = L(λ∗, y∗) = G0(y
∗) +

2∑
i=1

λ∗Gi(y
∗) ≤ G0(y

∗) = d∗

which implies that y∗ minimizes L(y, λ∗) and 
∑2

i=1 λiGi(y) = 0.

Conversely, if y∗ minimizes L(y, λ∗) and 
∑2

i=1 λiGi(y) = 0, then Claims 2 and 3 imply

b∗ = d∗ = L(y∗, λ∗) = G0(y
∗)

which implies that y∗ is optimal for (PP ). So both Claim 4 and the proposition are proved. �
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