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Abstract

Using a mechanism design approach, we consider a firm’s optimal pricing policy when consumers are
heterogeneous and learn their valuations at different times. We show that by offering a menu of advance-
purchase contracts that differ in when, and for how much, the product can be returned, a firm can more
easily price discriminate between privately-informed consumers. In particular, we show that screening on
when the return option can be exercised increases firm profits, relative to screening on the size of the refund
alone, only if the expected gains from trade are higher for consumers who learn later. We show that in some
settings (mean-preserving spread) the firm can achieve the complete-information profits and analyze the
optimal contract in other settings (first-order stochastic dominance) in which the first-best allocation is not
always feasible.
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This paper analyzes an optimal advance-purchase pricing, or revenue-management, problem
when consumers learn their valuations for future consumption over time. We assume that each
consumer begins with private information about both the distribution of her valuation and the
time when she will learn her valuation. Later, once she has learned her valuation, she also has
private information about the realization of her valuation. For ease of analysis, we assume that
each consumer’s type, or initial private information, is the time that she will learn her valua-
tion, and that the distribution of each consumer’s valuation is a function of her type. In this way,
consumers begin with private information about two characteristics, the distribution of their val-
uations and the time that they will learn their valuation, but their initial private information can
be represented as a single dimension of information.

We formulate the firm’s optimal pricing problem as a dynamic mechanism design problem.
The firm maximizes its profit over the set of dynamically incentive-compatible direct-revelation
mechanisms when the firm knows only the ex ante distribution of consumers’ private information.
We characterize the optimal direct-revelation mechanism and show that the firm can implement
the optimal mechanism with a menu of contracts with different prices and different refund terms,
including both the size of the refund available and the time at which the refund option can be
exercised. Such pricing strategies are widely used by airlines, hotels, and railroads, as well as a
variety of other firms in the retail, transportation and event industries.

The main contribution of the paper is to demonstrate that time can be a powerful screening
device when consumers learn their valuations at different times and their valuations are correlated
with when they learn. By explicitly assuming consumers learn at different times, we are adding
additional periods (a continuum of periods since we assume a continuum of consumer types)
to the sequential screening model analyzed by Courty and Li (2000). While the information
consumers have before learning and after learning is the same as in Courty and Li (2000), the
existence of these additional reporting periods creates an additional screening device which the
firm can potentially use to earn significantly higher profits and even, in some cases, to implement
the first best.

While Courty and Li (2000) focus on screening on the size of the refund that consumers
receive in a model in which consumers learn their valuations (and make their return decisions)
at the same time, we assume consumers learn their valuations at different times and then allow
the firm to screen on both the size of the refund and when the refund option can be exercised.
Intuitively, screening on when the refund can be exercised allows the firm to costlessly satisfy
all of its “downward” local incentive compatibility constraints. No consumer wants to report that
she will learn her valuation just before she actually does, because doing so will require her to
report her valuation before she learns it and hence to forgo the option value of returning the good
if her valuation is low — a positive discrete cost. Because screening on when the refund option
can be exercised may relax incentive constraints, it has the potential to increase profits, but only
if those relaxed incentive constraints were binding. We show that profits may increase, and may
even increase all the way to the complete-information profits, but that profits may also be the
unchanged (relative to a model in which consumers learn their valuations simultaneously).
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We first consider conditions under which the firm can implement the first best. These are
settings in which the expected gains from trade are higher for consumers who learn later, so if
the firm offered a menu of the complete information contracts then consumers who learn later
would all imitate the consumer who learns the earliest — “downwards” incentive compatibility
constraints bind. The firm would like to relax these constraints by screening on when the return is
exercised. These are also settings in which the value of the option to return the good is sufficiently
high.

When a consumer who learns late imitates a consumer who learns early, she forgoes the option
to return the good if she subsequently learns her valuation is low (because the return option
expires before she learns her valuation). If this forgone option value is greater than the difference
in the two types’ expected gains from trade, then the firm can extract all of the expected gains
from trade from consumers. We show that one setting that satisfies these two conditions is when
consumers who learn later have a distribution of valuations that is a mean-preserving spread of
the distribution of valuations of consumers who learn earlier.

We then consider conditions under which screening on when consumers can exercise the
return option has no added value. These are settings in which the expected gains from trade
are decreasing. So if the firm offered a menu of the complete-information contracts, then all
consumers would imitate the consumer who learns the latest. In these settings, screening on
when the return option can be exercised has no value. The firm is unable to exploit the fact that
some customers learn their valuations later because these are not the consumers to whom it would
like to set a higher price.

Finally, we consider conditions under which screening on when consumers can exercise the
return option increases profits but does not implement the first best. These are settings in which
the expected gains from trade are higher for consumers who learn later, but the value of the return
option is not high enough to deter consumers who learn late from imitating consumers who learn
early. We show that in these settings the firm will screen both on the size of the refund and on the
time when it can be exercised.

For comparison to Courty and Li (2000) we emphasize two cases that exhibit increasing ex-
pected gains from trade, mean preserving spread (MPS) and first-order stochastic dominance
(FOSD). However, in contrast to Courty and Li (2000), our consumers are ordered by when they
learn, not just by their distributions. So we differentiate between Forward MPS (consumers who
learn late have a distribution of valuations that is a mean-preserving spread of the distributions
of consumers who learn early) and Reverse MPS (consumers who learn early have a distribution
of valuations that is a mean-preserving spread of the distributions of consumers who learn late);
and we differentiate between Forward FOSD (consumers who learn late have a distribution of
valuations that first-order stochastic dominates the distributions of consumers who learn early)
and Reverse FOSD (consumers who learn early have a distribution of valuations that first-order
stochastic dominates the distributions of consumers who learn late). Both Forward MPS and For-
ward FOSD exhibit increasing expected gains from trade, while both Reverse MPS and Reverse
FOSD exhibit decreasing expected gains from trade. We find that the firm can extract the entire
surplus in the Forward MPS case — the option value a consumer forgoes by purchasing before
they know their valuation is always greater than the difference in expected gains from trade (the
difference in the complete information prices). We also find that the firm earns higher profits, but
may not be able to extract the entire surplus, in the Forward FOSD case. Finally, we find that in
the Reverse MPS and the Reverse FOSD cases screening on when the return option is exercised
has no effect on profits.
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We characterize the optimal contract under Forward FOSD when the complete-information
allocations are not feasible and show that the firm still offers a menu of expiring refund con-
tracts, but offers lower-valuation, early-learning consumers contracts with a higher refund price
(a downward distortion in allocation) and offers higher-valuation, later-learning consumers con-
tracts with a lower refund price (an upward distortion in allocation). The distortion for consumers
who learn early deters imitation by consumers who learn late. This is the same distortion as
in Courty and Li (2000), but it in our model only the very highest type consumer is indiffer-
ent between reporting truthfully and imitating consumers who learn early, and the only binding
“downwards” incentive-compatibility constraints are global constraints. This distortion increases
what consumers who learn early are willing to pay because they are getting a more attractive re-
fund option, but the highest type will never exercise the refund option if she imitates another
consumer because she won’t yet know her valuation. The lower return price (upward distortion
in allocation) for consumers who learn late deters imitation by consumers who learn earlier (but
not very early). This is a binding “upward” local incentive-compatibility constraint that does
not exist in Courty and Li (2000) and other settings. The distortion is profitable because the
downward global incentive-compatibility constraints don’t bind for these consumers, but these
consumers are attracted to the rents captured by the very highest type. And the distortion is ef-
fective because these consumers are also less willing to pay up front for the increased chance of
being allocated the good, so the distortion reduces the rents captured by these consumers.

Advance-purchase tickets with expiring refund options (or exchange options) are commonly
sold by airlines, hotels, theaters and railroads. The US passenger service railroad, Amtrak, has
a 90% of purchase price cancellation policy for tickets purchased at list price, but also offers
lower promotional discount fares which are non-refundable and must be purchased 14 days in
advance. Carnival Cruise Line’s list prices for its products are 50% refundable between 30 and
45 days prior to departure, 25% refundable between 15 and 29 days prior to departure, and non-
refundable within 14 days of departure, but tickets purchased through its Early Saver Program
are up to 20% less expensive but are non-refundable from the date of purchase and are typically
only offered more than 90 days before departure. In the US, several hotels, including Marriott,
Hilton, Sheraton, and Westin, offer 21-day advance-purchase discounts that are non-refundable,
but most other reservations at these hotels can be canceled prior to 1 day prior to arrival for a full
refund. And almost all airlines offer both fully refundable and non-refundable fares. For exam-
ple, Southwest Airlines offers both fully refundable “Business Select” and “Anytime” fares with
no advance-purchase requirement and significantly lower-priced, non-refundable, “Wanna Get
Away” fares with an advance-purchase requirement (the industry typically uses 7-day, 14-day,
and 21-day advance purchase requirements). And finally, Disney charges a cancellation fee of
$200 for cancellations 6 or more days before arrival and offers no refund for cancellations 5
or fewer days before arrival. Disney also offers bundled discount packages with less generous
cancellation policies. These examples illustrate that many firms sell their product at a discount
to consumers who accept contracts with no return option or with a return option which expires
early.!

The paper is organized as follows. Section 1 gives a numerical example that demonstrates that
screening on when the return option can be exercised increases firm profits. Section 2 briefly re-
views the related literature. Section 3 presents the general model and introduces the mechanism

1 Partially-refundable, or equivalently options, contracts are also used by distributors and very large buyers to purchase
electric power. These contracts reduce the risk faced by the buyers, but also may enable electricity suppliers with local
market power to extract more surplus from buyers.
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design problem. Section 4 presents necessary and sufficient conditions for the first-best solution
to be feasible, that is, for screening on when the return option can be exercised to earn the com-
plete information profits, and demonstrates that the first-best is achieved when the distributions
satisfy Forward MPS. Section 5 presents sufficient conditions under which screening on when
the return option can be exercised is not useful, which includes both Reverse MPS and Reverse
FOSD. In these cases, the optimal mechanism is the equivalent to the optimal mechanism in a
model in which consumers learn simultaneously (i.e., Courty and Li, 2000). Finally, in Section 6,
we derive the optimal mechanism in an interesting case in which screening on when the return
option can be exercised is a useful screening device, but the first best is not feasible. That is, when
the distributions satisfy Forward FOSD but the option value is insufficient. Section 7 discusses
potential extensions of the model and offers some concluding remarks.

1. A numerical example

A numerical example illustrates how a firm can use both the size and the timing of its refund
offers to increase its profits. Suppose that there are two types of consumers who know the distri-
bution of their valuations, but don’t initially know the realization of those distributions. Type 1
consumers learn early, at time #1, and type 2 consumers learn late, at time ,, where #, > f].
Assume that a type 1 consumer’s valuation is v; = 120 with probability 1/4 and is v = 0 with
probability 3/4, and assume that a type 2 consumer’s valuation is vy = 180 with probability 1/2
and is vy = 0 with probability 1/2. Also, suppose that the firm’s unit cost is ¢ = 100 so that
it is efficient for consumers to consume the good whenever their valuations are high.” Finally,
suppose the firm sells in advance, before any consumers learn their valuations.

If consumers’ types were common knowledge, then the firm could design a different contract
for each type. The firm wants to create incentives for efficient ex post consumption while ex-
tracting all of the ex ante surplus. One obvious way to do this is to sell the good with an option
to return it later (anytime after she consumer learn her valuation) if the realized valuation is low.
To insure ex post efficient allocation, the firm could set the return price for both types equal to
its unit cost, 71 = ro = 100 (this is not the unique value of the return price in this example), and
in order to extract all the surplus the firm would charge type 1 consumers an up-front payment of
105 (equal to E[max {vy, r1}]) and charge type 2 consumers an up-front payment of 140 (equal
to E[max {v2, r2}]). The expected profit is E[max {v; — ¢, 0}] =5 for each type 1 consumer, and
E[max {vy — ¢, 0}] = 40 for each type 2 consumer.

Now consider what happens when the firm offers this menu of contracts to privately-informed
consumers. Clearly the contracts are not incentive compatible. Both consumer types prefer the
contract offered to the type 1 consumers, so both pay a price of 105. Type 1 consumers get a
surplus of 0 and type 2 consumers get an expected surplus of 35 (equal to 1/2 x 180 + 1/2 x
100 — 105). The firm earns a profit of 5 for each type 1 and 5 for each type 2 consumer. However
the firm can do better.

The firm has two instruments with which it can screen the type 2 consumers. First, the firm
offers a higher refund to type 1 consumers. This discourages type 2 consumers from purchas-
ing the contract designed for type 1 consumers because the higher refund is associated with a

2 Inour two-type example, changing refunds need not lead to inefficient ex post allocations, so there may be a variety of
refund values which yield the same profits, but in our general model valuations are drawn from a continuous distribution,
so refunds that are not equal to cost lead to allocation distortions, and the profit-maximizing contracts are unique.
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larger upfront payment, and type 2 consumers value the return option less than type 1 consumers
because they use it less frequently.

Specifically, the firm can increase the size of the refund for type 1 consumers to r; = 120. By
increasing the refund for type 1 consumers to 120, it can increase the price charged to type 1 to
p1 =120 (equal to 1/4 x 120 4 3/4 x 120). Even though the price is higher, profits from each
type 1 consumer are still 5 because the refund is also higher (and the increase does not cause a
distortion in allocation to type 1 as long as the refund is less than 120 because we have assumed a
binary distribution for vy ). type 2 consumers get a surplus of 30 from type 1’s contract, so the firm
can offer a refund of r, = 100 and a price of pp = 110 (equal to 1/2 x 180+ 1/2 x 100 — 30) to
type 2 consumers (note that a change in the refund offered to the type 2 consumers has no effect
on profits). In this way the firm can increase its profit from 5 to 10 for each type 2 consumer.

Screening in this way on the size of the refund, as originally analyzed by Courty and Li
(2000), increases the firm’s profits but does not implement the complete-information outcome —
the first-best profit is 5 for each type 1 consumer and 40 for each type 2 consumer. But if t, > 71,
the firm can do even better because it now has a second instrument. The firm can also set an ex-
piration time for the refund offers made to type 1 consumers. This discourages type 2 consumers
from purchasing the contract designed for type 1 consumers because type 2 consumers won’t
know their valuations when they must choose whether to accept the refund. In this example, the
complete information contracts can be modified to make them incentive compatible. The firm
simply needs to specify that the return option offered to type 1 consumers must be exercised
before time 1;, that is, before type 2 consumers learn their valuations.

However, notice that if #, < 1, then screening on when the return option is exercised has no
effect. The best the firm can do is screen on the size of the refund. So screening on when the
return can be exercised is profitable when consumers who learn late want to imitate consumers
who learn early.

Finally, notice that if type 2 has valuation v, = 180 with probability 4/5 instead of 1/2,
then the firm finds it profitable to use both screening instruments. In particular, the complete
information contracts are p; = 105 and r; = 100 for type 1 and p, = 164 and r, = 100 for
type 2, but now the type 2 consumer gets a surplus of 59 from type 1’s complete information
contract (4/5 x 180 4+ 1/5 x 100 — 105); the type 2 consumer gets a surplus of 48 from the
contract p; = 120 and r; = 120 (4/5 x 180 4+ 1/5 x 120 — 120); and the type 2 consumer gets
a surplus of 24 from the contract p; = 120 and r; = 120 if the firm also screens on when the
return option can be exercised (4/5 x 180 4 1/5 x 0 — 120). So the contract offered to the type
2 consumer is pp = 140 and r, = 100, for a surplus of 24, and the firm’s profit is highest when
both instruments are used together.

This numerical example illustrates that there are two potential elements of the firm’s optimal
screening strategy. First, the firm increases the price of the ticket sold to type 1 consumers by
increasing the size of the refund which increases the option value and increases type 1 consumers’
willingness to pay. And second, the firm sets an expiration date for the return option offered to
type 1 consumers. The expiration date is before type 2 consumers learn their valuations so that
the type 2 consumers can’t imitate the type 1 consumers without paying for a return option that
they never use.

While the numerical example illustrates the value of screening on when the refund option can
be exercised, it is restrictive in several important ways. First, the assumption that each consumer’s
valuation is drawn from a discrete distribution implies that at least some changes in the return
price do not change or distort ex post consumption decisions. In the paper, we analyze a model
with much more general valuation distributions in which changes in the refund price are always
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distortionary. Second, the assumption that there are only two consumer types oversimplifies the
firm’s problem. Instead, we analyze a model with a continuum of consumers learning in sequence
and identify additional issues that aren’t evident in a two-type model. In particular, we show that
the binding incentive constraints are not just the constraints preventing consumers from imitating
other consumers who learn earlier. When consumers who learn late capture information rents to
prevent them from imitating consumers who learn early, consumers who learn at intermediate
times may find it more attractive to imitate consumers who learn later than those that learn earlier.

Astute readers may also have noticed that instead of offering a menu of refundable tickets
ex ante, the firm could also implement the first best by offering a sequence of ex post contracts
and literally screening on when the product is purchased. The firm could instead offer type 1
consumers a non-refundable contract for 120 that they purchase at time ¢1, after they have learned
their valuations, but before type 2 consumers have learned their valuations, and offer type 2
consumers a non-refundable contract for 180 that they purchase at time 1;, after they have learned
their valuations. These prices are incentive compatible. And this implementation fits the pricing
practices in our hotel, airline and railroad examples quite well. Type 1 consumers represent tourist
or leisure travelers, and these consumers purchase at a lower price early, but after they learn their
valuations are high. Type 2 consumers represent business travelers who purchase at a higher
price late, and only if their valuations are high. But extracting the entire surplus with these ex
post spot prices is only feasible because of the binary distribution assumption in our numerical
example (see Ata and Dana, forthcoming for a more general analysis of optimal pricing under
this assumption).

Finally, the most astute readers may have noticed that in our numerical example the firm can
also implement the first best without screening on when the return can be exercise by waiting until
after type 1 has learned her valuation to offer the menu of contracts. This is a consequence of
the fact that in the example there are only two types and that type 1 consumers are homogeneous
conditional on having a valuation greater than c. Simply increasing the number of types to three
would prevent this strategy from implementing the first best without screening on when the
option is exercised. And screening on when the option is exercised is essential to getting the full
information profits in the general model.

2. Related literature

We begin by discussing three different closely-related literatures: the literature on advance-
purchase pricing when consumers learn over time, the operations management literature on
pricing and capacity controls in stochastic environments, and the dynamic mechanism design
literature on optimal pricing when consumers learn over time.

The literature on advance-purchase pricing has largely focused on two-period models, that
is, one period before consumers learn their demands and one period after. With the exception
of Courty and Li (2000), discussed below, this literature also assumes that purchases are not
refundable. Courty (2003) considers a monopolist that can commit in advance to its prices and
that chooses whether to sell to consumers before (advance sales) or after (spot market sales)
they have learned their demand. Courty (2003) shows that ex ante sales reduce profits because
they lead to inefficient allocation (over consumption or under consumption), but can increase
profits for a monopolist when consumers are more homogeneous ex ante so the dead weight
loss of the monopoly pricing distortions is reduced. DeGraba (1995) considers a monopolist that
is unable to commit to its future prices and that intentionally creates a capacity shortage and
hence a buying frenzy in the spot market that induces buyers to purchase early, before they know
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their valuations. Dana (1998) considers a competitive model in which heterogeneous consumers
divide their purchases between advanced sales, when they may not yet know their demands, and
spot market sales, after their valuations have been realized. Gale and Holmes (1993) considers
a related model in which a monopolist that sells to heterogeneous consumers discriminates by
selling to some consumers early before they know their departure-time preferences and selling to
other consumers late after they learn their preferences.’ Probably the most closely related paper
in this literature is Nocke et al. (2011). Like us they emphasize the use of advance sales as a
screening mechanism in a model with full commitment and no aggregate demand uncertainty or
capacity constraints, but in their model, consumers vary in how much information they have in
advance, not in when they learn their valuations.*

Che (1996) is the first paper to explicitly consider the optimal use of refunds (or returns) when
consumers learn about their valuations after making their purchase decisions. Che (1996) finds
firms are more likely to offer refunds when costs are high and when consumers are risk averse,
though Che (1996) restricts attention to nonrefundable or fully refundable sales.

A few papers have considered partially refundable ticket sales when consumers learn over
time.” The most closely related paper is Courty and Li (2000) (see also Ringbom and Shy, 2004).
In Courty and Li (2000), the firm screens consumers on the size of the refund, but not on when
consumers can claim the refund. As in our model, consumers make their purchases before they
learn their valuations, but retain an option to cancel and claim a partial refund after they learn
their valuations. These refund contracts increase firm profits in two ways. First, they allow the
firm to extract more total surplus from consumers, even when consumers are homogenous. And
second, because the firm can vary the size of the refund, they allow the firm to better discriminate
between heterogeneous consumers.°

Historically, the operations management literature on advance-purchase sales has considered
both optimal pricing and capacity controls when heterogeneous consumers purchase in an ex-
ogenously given, sequential order. Littlewood (1972) considers a setting in which the consumers
have either high or low valuations, which are known and observable. Consumers with low val-
uations arrive in the first period, while the consumers with high valuations arrive in the second
period. There is aggregate uncertainty about the number of consumers of each type, and a sys-
tem manager chooses how much capacity to reserve for the consumers with high valuations.
Littlewood (1972) characterizes the optimal policy as a booking limit policy. Brumelle and
McGill (1993) and Curry (1990) provide extensions of Littlewood’s result to n customer classes,
characterizing the optimal capacity control policy by nested booking limits. Talluri and van Ryzin
(2004) provides an extensive review of these papers and many other extensions of these capacity
control models in the operations management literature.

3 See also Mbller and Watanabe (2010) and Gale and Holmes (1992).

4 Nocke et al. (2011) also make the restrictive assumption that consumers’ valuation distributions are binary. Because
of this assumption, and the way that they model consumer heterogeneity, as in Ata and Dana (forthcoming), the optimal
mechanism can always be implemented without selling refundable tickets.

5 In the absence of risk aversion, by setting the refund price equal to its cost, the firm is assuring that the consumer’s
consumption decision is ex post efficient and allowing itself to extract all of the consumer surplus through an ex ante
lump sum payment, so the optimality of partial refunds is a direct implication of the principal-agent literature on ex ante
contracting when the agent is ex post privately informed.

6 A few papers in the economics literature have looked at consumer learning and refund contracts empirically. In
particular, Escobari and Jindapon (2008) show that the difference between the advance-purchase price of a refundable
airline ticket and the advance purchase price of a non-refundable airline ticket declines over time, which is consistent
with consumers learning about their valuations over time.
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Gallego and Sahin (2010) and other more recent papers in the operations management liter-
ature, model consumers as forward-looking and strategic (for a review see Shen and Su, 2007).
Gallego and Sahin (2010) (see also Su, 2009) consider a model with ex ante homogeneous con-
sumers, but assume that consumers learn in a multiperiod, stochastic environment and that the
firm is capacity constrained. They find that the firm maximizes its profits by selling to consumers
as early as possible and allowing consumers to exercise the return option as late as possible. Chen
(2011) considers a related model of optimal pricing and refund policy with consumer learning,
aggregate demand uncertainty, and capacity constraints.

The final closely-related literature is the dynamic mechanism design literature which consid-
ers optimal mechanisms when agents learn over time, and hence mechanisms in which infor-
mation is revealed sequentially.” Two of the earliest papers are Baron and Besanko (1984) and
Riordan and Sappington (1987). Both papers consider optimal regulatory policies when regu-
lated firms are learning about their costs over time. Board (2011) considers a related model in
which a firm auctions (in advance) the right to consume in the future after they have learned their
private value of consumption. Eso and Szentes (2007a) consider the optimal dynamic mechanism
in which an informed client can hire an expert to generate additional information that the client
can use to refine their decision making. They find the expert’s profit is the same as if the expert
perfectly observed the client’s private information.® Esé and Szentes (2007b) consider a related
auction model in which the seller can release additional information to privately-informed agents
who update their valuations based on the new information. As in the single agent model, in the
optimal mechanism the seller captures all the rents associated with the information they provide.
Krihmer and Strausz (2011) generalize both Courty and Li (2000) and Es6 and Szentes (2007a)
by adding endogenous information acquisition with moral hazard.

Board and Skrzypacz (2010) consider a capacity-constrained firm selling to ex ante homo-
geneous consumers who arrive in an exogenously given stochastic arrival process but who are
forward looking and can delay their purchases (i.e., can imitate consumers who arrive later).
While their consumers do not learn additional information after they arrive (see also the closely-
related model of pricing with strategic consumers in competitive markets by Deneckere and Peck,
2012), they characterize the optimal pricing and allocation and show that it can be implemented
with simple deterministic pricing rules that depend only on time and remaining inventory.

An important paper in this literature is Pavan et al. (2014) whose dynamic envelope theorem
characterizes the information rents of privately-informed agents. Since our paper characterizes
environments in which the first best can be implemented, an important question is why their
envelope theorem does not hold in our model. We discuss this in Section 4 of the paper.

Several related papers in dynamic mechanism design literature consider stochastic arrivals of
new consumers after the mechanism is announced. Deb and Said (2015) consider a two-period
model related to Courty and Li (2000) in which additional consumers arrive in period two who
cannot write contracts in period one. They also assume that the firm that cannot commit in ad-
vance to the contracts it offers in period 2. They show that the firm can benefit from postponing
ex ante contracting with buyers available in the first period, although this is never optimal un-
der full commitment. Gershkov and Moldovanu (2010) consider the optimal mechanism for a
patient firm selling a fixed number of heterogeneous objects to a stochastic sequence of impa-

7 For recent surveys of this literature see Bergemann and Said (2011) and Vohra (2012).

8 Gale and Holmes (1992) use a mechanism design approach to analyze consumer learning, but in their model it is
sufficient to utilize a static direct revelation mechanism because the firm’s optimal ex post allocation depends only on the
ex ante information.
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tient, privately-informed buyers. Garrett (2013) considers a firm that faces stochastic arrivals of
privately-informed buyers when the firm sells a durable good.

A paper that is more closely related to ours is Ely et al. (2013). They assume that consumers
observe a signal of their demand when they arrive and only learn their final demand in the final pe-
riod. Because arrivals are stochastic, the optimal mechanism features an auction-like mechanism
to determine the refund, or buyback, price. However, consumers’ valuations are not correlated
with their arrival time, so firms do not screen on when consumers make their final purchase
decisions.

Our work and Ely et al. (2013) both explicitly model the consumer learning process (see
also Ata and Dana, forthcoming). Further research in this area is important and should improve
our understanding consumers’ decisions about when to enter the purchasing process and firms’
responses to that behavior.

Finally, we analyze a model in which screening on when refunds take place is a useful
screening instrument, a result which contrasts with the traditional view that intertemporal price
discrimination is not profitable, a literature that began with Stokey (1979).” We show intertem-
poral price discrimination may be profitable when consumers learn their valuations at different
times and when the distribution of their valuations is correlated with when they learn.

3. The model

A single, risk-neutral firm sells a single, homogeneous good with unit cost c. Consumers are
heterogeneous and their types are continuously distributed on [0, 7] with a strictly positive den-
sity function % (¢) and cumulative distribution function H (¢). That is, & (¢) represents the relative
frequency of type ¢ consumers in the population. Consumers privately learn their type prior to
time 0, and all consumption takes place simultaneously after time 7.'° The type ¢ determines the
probability distribution of their valuations as well as the time at which they learn their valuations.
Without loss of generality, we assume that a type ¢ consumer privately learns her realized valu-
ation at time . We let f (v, t) denote the density function of the joint distribution of types and
valuations, and we assume that f (v, 1) is continuously differentiable. The valuation of a type ¢
consumer is distributed according to the probability density function f (v|f), and the cumulative
distribution function F (v|t) = fvv f (v|t) dv on the interval [v, v]. It follows that

/f(v,t)dvdt:l, /f(v,t)dv:h(t), and f (v, )= f () h(2).
v,t v

Assuming that f (v|t) has a common support for all ¢ significantly simplifies the analysis and
would be difficult to relax.

Note that we have assumed perfect correlation between the buyer’s distribution and the time
when she learn her valuation. This is a strong assumption and one that is potentially difficult
to relax. In particular, if the consumer did not know at time O precisely when she would learn
her valuation, then the optimal mechanism would require that the consumer report a much more

9 See also Salant (1989) and Anderson and Dana (2009) for generalizations of Stokey (1979) in which intertemporal
price discrimination may be profitable.
10" We sometimes refer to the contracting time as time zero and the consumption time at time 7', but the contracting time
is sometime after consumers learn their types, but before any consumers learn their valuations, and the consumption time
is sometime after all consumers learn their valuations.
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complicated stream of information, dramatically increasing the complexity of the optimal mech-
anism. This restrictive assumption allows us to focus on mechanisms that can be implemented
with a menu of refund schedules, a remarkably simple class of mechanisms. Much more work
remains to be done to consider optimal mechanisms with more realistic assumptions about the
relationship between consumers’ types and when they learn.

In what follows, we consider profit-maximizing incentive-compatible direct-revelation mech-
anisms for the seller. There is no loss in generality from restricting the seller to implement a sales
mechanism in which consumers truthfully report their types, ¢, at time zero and then report their
realized valuations, v, at time ¢ (see Pavan et al., 2014; Myerson, 1986, and Green and Laffont,
1986). Intuitively the seller can do no better than the maximally centralized communication sys-
tem in which, at every moment in time, each individual confidentially reports all of her private
information.

Before describing the mechanism design problem formally, we introduce some notation. For
each pair of reports of valuation v and type ¢, let y (v, ¢) be the probability that the seller delivers
the good, and let x (v, ) denote the net payment to the seller. Consider a consumer whose type
is t and whose valuation is v. Her ex post utility (or surplus) is given by

u@, v, 0 =vy@, 1) —x@, 1) (1)

if she reports her type as ¢’ and her valuation as v’. We will use u(v, t) to denote the consumer’s
ex post utility when she reports her type and valuation truthfully. That is,

u(, ) =vy, 1 —x(,1). 2)
The consumer’s ex ante expected utility as a function of her actual type, ¢, and her reported type,
t,is
E; [maxvr uv’,t’; v, t)] ift/ >1t,
max, E; [u(v', t';v, t)] otherwise,

UG 1) = { 3)

where E, denotes the expectation over v given the consumer’s type, ¢, or

E, [-]=f- F i) dv.

We use U (¢) to denote the consumer’s ex ante utility when she reports her type, and then later
her valuation, truthfully. That is,

Ut)=FE, [u(v,t)]:/u(v,t) £ (v]t)dv, Vt. 4)

Finally, using integration by parts, we write the total expected gains from trade associated with
sales to a type ¢ consumer as

E; [max(v—c,O)]:f(v—c)f(v|t)dv=1')—c—fF(vlt)dv,Vt. (®))]

The seller’s mechanism design problem (P) can be stated as follows:

x(v,t),y(v,t)

max /f(v,t) [x (v, 1) —cy (v, 1)] dvdt (P%)
v,t
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subject to
U(t) >0, Vt, (IR)
u(v,t) >u@, t;v,1), v, t, (Icy)
U(t)>U(t';1), V1,1, (ICo)
0<y(,t)<1,Vu,t, F)

and equations (1) through (4) (which define U and u as functions of x and y).

The first set of constraints are the individual rationality, or participation, constraints. These
constraints are imposed to guarantee that the firm gives every consumer nonnegative expected
surplus. Note that there is no ex-post individual rationality constraint, i.e., the ex-post utility
u(v, t) of a type ¢ consumer with a realized valuation v could be negative. For example, a con-
sumer might purchase a ticket to attend a meeting but not be eligible for a full refund if she later
learns the meeting has been canceled.

The second set of constraints are the incentive compatibility constraints with respect to the
consumers’ realized valuations. These are imposed to guarantee that each consumer, conditional
on reporting her type at time zero truthfully, finds it optimal to report her realized valuation
truthfully at time 7.

The third set of constraints are the incentive compatibility constraints with respect to the
reports of consumers’ types at time zero. These constraints can be divided into two distinct types
because U (¢'; t) is defined differently for upward deviations and downward deviations. When a
type ¢ consumer reports a lower type, i.e., t’ < t, she will subsequently be asked to report her
valuation before she learns her true valuation, while when a type ¢ consumer reports a higher
type, i.e., t’ > t, she will subsequently be asked to report her valuation after she learns her true
valuation.

The final set of constraints, denoted by (F), require the delivery rule y to be feasible.

The following lemma, which closely follows Courty and Li (2000), characterizes how a con-
sumer reports her valuation if she does not report her type truthfully at time zero. The proof is
omitted.

Lemma 1. [f the mechanism satisfies the incentive compatibility constraints, (1C;), regarding the
report of the consumers’ valuations, then

(i) if a type t consumer reports her type as t' at time zero, and if she knows her true valuation
at time t' (because t' > t), then it is optimal for her to report her true valuation, that is, v €
argmax, u(v',t'; v,1); and

(ii) if a type t consumer reports her type as t' at time zero, and if she does not know her true
vacation at time t' (because t' < t), then it is optimal for her to report her expected valuation,
that is, B, [v] € argmax, E; [u(v’, 1 v, 1)].

As in Courty and Li (2000), Lemma 1(i) follows immediately from (IC;) and holds because
once the consumer learns v her payoff is independent of her true type and depends only on her
announced type. So if (IC;) holds then consumers will always reveal v truthfully.

Lemma 1(ii) also follows from (IC, ) and holds because a consumer whose valuation was [E;[v]
would report it truthfully even after reporting her type as t’, and the consumer’s payoff is linear
in the realization of her valuation conditional on her reports, so if reporting E;[v] maximizes
u(v',t'; E;[v], t') then reporting E,[v] must also maximize her expected utility.
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Using Lemma 1(i) for reports satisfying ¢’ > ¢ and Lemma 1(ii) for reports satisfying ¢ > ¢/,
and separating (IC) into two constraints, the seller’s mechanism design problem becomes (P'):

x(v,rtr)li))zv,t) / f (v, 1) [x (v, t) —cy (v, t)] dvdt (PhH
vt
subject to
U((t) =0,Vr, (IR)
u(,t) >u@, t;v,1), Yo, v, ¢, (IC))
U@) =E [u(, t';v,0],Vt,t'5 1 > 1, (ICo)
U) =B, [u [v], 15 0,0)], V8,051 <1, (ICy)
0<y(v,1)<L1,Vu,r. (F)

In this formulation, we separate the set of constraints (IC) into two subsets in order to emphasize
the difference between the upward and downward deviations in the consumer’s report of her type.
The set of constraints (IC) corresponds to upward deviations (imitating a type that learns later),
whereas (IC)) corresponds to downward deviations (imitating a type that learns earlier).

This is the fundamental difference between the firm’s problem when consumers learn sequen-
tially, (P'), and Courty and Li (2000)’s analysis of the firm’s problem when consumers learn
simultaneously. The ex ante incentive compatibility constraint in their paper is

U@) =B [u(,t';v,0)],Vt,1, (6)

instead of (ICy) and (ICy), so it is equally easy to imitate any other type, while in our paper it is
more costly for a consumer to imitate consumers who learn earlier than it is to imitate consumers
who learn later.

If consumers had no private information, that is, if the seller could ignore the incentive
compatibility constraints and maximize only subject to the individual rationality and feasibility
constraints, then clearly the optimal solution to the above program is to set y(v,#) =1if v>c¢
and y(v, t) = 0 otherwise, and to set x (v, ¢) to extract all of each consumer’s ex ante consumer
surplus, that is, to set x (v, t) such that U(¢) = 0. This is the complete-information or first-best
solution. The seller is able to extract all of the consumer surplus and the solution allocates the
good efficiently.

The following lemma is standard and is useful for further simplifying the seller’s problem. It
states that under any optimal mechanism, when the consumer’s realized valuation is higher, she
receives the good with a greater probability and has a greater consumer surplus. The proof of the
lemma is standard in the mechanism design literature and therefore is skipped.

Lemma 2. The incentive compatibility constraint (1C,) is satisfied if and only if
(i) du (v, t) /Jov =y (v, t) for almost every v, and
(ii) y (v, t) is non-decreasing in v.

4. When screening on time achieves the first-best

The following proposition gives necessary and sufficient conditions under which the firm can
implement the complete-information allocation and earn the complete-information profits even
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though consumers’ types and valuations are privately observed. That is, we provide conditions
under which the firm can implement the first-best outcome by screening only on when the return
option can be exercised. Its proof is given in Appendix A.

Proposition 1. The seller can implement the complete-information solution if and only if
E,/ [max (v — ¢, 0)] > E; [max (v — ¢, 0)], V¢’ > ¢, (IEGT)
and

Ey [max (v —c, 0)] > E; [v] — ¢, VY < t. (SOV)

Intuitively, the complete-information solution is implemented by charging every consumer
p(t) =E,; [max (v, c¢)] = E; [max (v — ¢, 0)] + ¢ at time 0, and offering them a refund of () = ¢
at time ¢, where E; [max (v — ¢, 0)] is the expected gains from trade for a consumer of type ¢.
So if Condition IEGT, short for increasing expected gains from trade, did not hold, then a type ¢
would strictly prefer the lower-priced contract, { p), r(t’)}, which she could costlessly obtain
by imitating type ¢’ > ¢. Imitation of type ¢’ > t is costless because the refunds offered are the
same and because type ¢ will know her valuation at time ¢’ > ¢.

Condition SOV, short for sufficient option value, is necessary because otherwise type ¢ would
imitate type ¢’ < . The cost of this deviation is

E; [max (v — ¢, 0)] — [E, [v] —c], @)

which is the value of the option to return the good if type ¢ does not deviate (type ¢ will report
her valuation exceeds ¢ when required to report early). This is a strictly positive cost that does
not depend on which type ¢/ < ¢ that ¢ imitates. So this cost makes small or local downward
deviations unprofitable if the firm screens on when the refund can be exercised.

The benefit of this deviation is the reduction in the upfront payment, p(r) — p(t’), or

E; [max (v — ¢, 0)] — E; [max (v — ¢, 0)], ()

which is positive by Condition SOV. Clearly the cost, (7), is bigger than the benefit, (8), if and
only if Condition SOV holds.
Since the expected gains from trade can be written as

E; [max (v — ¢, 0)] =E, [v] — ¢ + E; [max (¢ — v, 0)],

and the option value, E; [max (c — v, 0)], is always positive, Condition SOV is satisfied whenever
the consumer’s expected valuation, E, [v], is decreasing in ¢. But Condition SOV may not be
satisfied when the consumer’s expected valuation is decreasing. In particular, if v > ¢ then the
option value is zero and Condition SOV is satisfied if and only if the expected valuation is
increasing, so Condition IEGT and Condition SOV are mutually exclusive. However, when ¢
is sufficiently large, or when v is sufficiently small, or more generally when the option value is
sufficiently large, then Condition IEGT and Condition SOV can both hold.

Proposition 1 shows that the seller is strictly better off when consumers learn their preferences
sequentially; indeed, when Condition IEGT and Condition SOV hold, the seller can implement
the unconstrained first-best. When Condition IEGT and Condition SOV are both satisfied, there
is a unique mechanism, (x(v, t), y(v, t)), that extracts all of the surplus. One way the firm can
implement this mechanism is with a menu of expiring refund contracts: the initial upfront price
for a ticket is p(¢) = [E; [max (v, ¢)] and the refund is r(¢) = c if the ticket is returned any time
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up to time ¢. Since the refund is equal to ¢, only consumers with valuations higher than the ¢ will
consume, which implies that the allocation is ex post efficient. Moreover, the expected utility of
all the consumers is equal to zero. Because Condition SOV of Proposition 1 is satisfied, no type
t consumer would want to purchase the ticket designed for a higher type ¢’ > ¢. Similarly, when
Condition SOV of Proposition 1 is satisfied, no type t would want to purchase the ticket designed
for a lower type ¢’ < t since the refund of the ticket for type ¢’ expires at time ', when the type ¢
consumer is still uncertain about her valuation for the ticket.

On the other hand, when the consumers learn their valuations at the same time, the seller
cannot exploit the differences in learning times to screen consumers. In particular, in the model
analyzed by Courty and Li (2000) the only case in which the seller can implement the first-best is
the degenerate case in which all consumers have the same expected surplus, i.e., E; [max (v, ¢)] —
¢ does not depend on ¢.'"

Importantly, Proposition 1 is inconsistent with the envelope theorem of Pavan et al. (2014),
which characterizes the information rents that privately-informed agents earn in optimal dynamic
mechanisms. Clearly our assumptions differ in important ways from those of Pavan et al. (2014).
In some respects the differences in our setting and that of Pavan et al. (2014) are rather dra-
matic. In particular, the timing of consumers’ valuation reports depends on consumers’ earlier
reports about their types, and we consider a continuous-time model while Pavan et al. (2014)
consider a discrete-time model. One intuitive way to think about the inconsistency is that we
introduce screening on when consumers can exercise the return option and this instrument is not
distortionary in our model. That is, requiring a type ¢ consumer to exercise the return option at
time ¢ (instead of later every consumer has learned) is not costly for type ¢, but is costly for type
" > t. But the fundamental reason for the inconsistency is that the impulse response functions
are unbounded in our setting and so the envelope theorem does not apply.

Note also that as in the general model of Pavan et al. (2014), the agent’s private information
in this paper at any moment t can be summarized with a one-dimensional type, which is his
initial type ¢ at all time t < ¢ and his realized valuation v for time t > t. However, the impulse
response of this stochastic process to the agent’s initial type is infinite at the moment T = ¢ (since
a small change in ¢ shifts the agent’s type from ¢ to the agent’s realized value). In contrast, the
PST envelope-theorem derivation of the agent’s information rents relies on their assumption of
bounded impulse responses. The unboundedness of impulse response in our paper may be the
technical reason for the principal’s ability to extract the agent’s information rents under some
conditions.

Note however that the assumption that learning is instantaneous and not gradual is not crucial
for implementing the first-best allocation. Ata and Dana (forthcoming) explore a generalization
of the binary distribution numerical example discussed above and derive similar results even
when information about valuations arrives gradually. In that paper, consumers’ beliefs evolve in
response to new information between time 0 and time ¢, and we show that it is a cap on how
optimistic consumers can become, not on quickly their beliefs evolve that determines whether
the first-best is incentive compatibility. Of course, in that paper we are also assuming the type
space is multidimensional, which is inconsistent (Pavan et al., 2014). Clearly, it is important to
understand which assumptions in our model are critical for our economic insights and how those
assumptions differ from those in Pavan et al. (2014) and other related research.

T This is because Courty and Li (2000) assume the distribution of valuations has full support. When the distribution
is binary, the complete-information profit may be feasible with heterogeneous consumers because differences in the
refundability of purchases do not distort ex post consumption.
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Clearly a more realistic assumption is that consumers vary in when they expect to learn, but
precisely when they learn their valuations is still random. For example, a type ¢ consumer might
learn her valuation at a random time in a small interval around z. In such a setting, requiring
consumers to report their valuations at time ¢ would be costly, but it would still be less costly for
a type t consumer to report her valuation at time ¢ then for a type ¢’ consumer, where ¢’ > t. So
while it wouldn’t be possible to achieve the first-best in this case, some of the same economic
insights should hold.

A simple case in which both Condition IEGT and Condition SOV of Proposition | are sat-
isfied, and the optimal mechanism achieves the first best, is when consumers who learn their
valuations later have more dispersed priors about their valuations, in the sense of a mean-
preserving spread (MPS). We call this Forward MPS and in Section 5 contrast this with Reverse
MPS in which consumers who learn their valuations later have less dispersion in their valuations.
We define forward mean-preserving spread following the definition in Rothschild and Stiglitz
(1970).

Assumption 1 (Forward MPS). Let u =, [v] for all t. For all t, t’ such that t' > t,
v
/ [FQ'lt) — F(v'|)]dv' = 0, Vv, )
v

with strict inequality for some v.

We now show that Condition IEGT and Condition SOV of Proposition | are satisfied under
Assumption 1, and so the complete-information outcome can be implemented.

Proposition 2. Under Assumption 1 (Forward MPS), the first-best solution can always be imple-
mented.

Proof. Using (5),

E, [max (v — ¢, 0)] — E; [max (v — ¢, 0)] = / [F (vlt) = F (v]t')] dv,

c

= _f [F (vlt) — F (v]t')]dv =0,

v

for all ¢’ > t, where the inequality follows from Assumption 1, so Condition IEGT of Proposi-
tion 1 is satisfied. Also, Assumption | implies E,; [v] = E, [v], so

E; [max (v —c,0)] > E/ [v] —c¢
implies
Et’ [maX (U —C, O)] Z ]E[ [v] —C,

for all ¢,¢’, so Condition SOV of Proposition 1 is satisfied. O
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Note that unlike most standard sequential screening frameworks, the firm is offering every
consumer a contract with the same strike price, or refund option, yet these consumers are not
pooled; the price in each case is equal to their individual willingness to pay. Instead the firm sep-
arates initial types by varying the time that the option to claim the refund expires, an instrument
that does not reduce total surplus.

Intuitively, consumers who learn late have the same expected valuation, but their expected
valuation conditional on the valuation being above cost is higher, so Condition IEGT is clearly
satisfied. And Condition SOV is satisfied because at the complete-information prices a consumer
who imitates a consumer who learns earlier must get a negative expected consumer surplus —
the price she pays and her expected valuation are both the same as the consumer she imitates,
but that consumer gets zero expected surplus while deriving a positive benefit from the option to
return the good if her valuation is low.

In Section 6 we will see that both Condition IEGT and Condition SOV may also hold when
the consumers’ distributions can be ordered with respect to first-order stochastic dominance.

5. When screening on time is not useful

In Section 4 we showed that under some conditions the seller can achieve the first best by
using the timing of refunds as a screening device. This section considers instead the conditions
under which screening on the timing of refunds is ineffective, or equivalently, when the optimal
mechanism with sequential learning is equivalent to the optimal mechanism with simultaneous
learning.

Screening on time is a potential way to prevent a buyer of type ¢ from imitating a buyer of
type ¢ < t, but not vice versa. The asymmetry is because once the buyer learns her valuation
she always knows it, and so imitating a consumer with a higher type is easy, while imitating a
consumer with a lower type is harder because it is costly for her to report her valuation before
learning it. So time is not useful as a screening device when low types would like to imitate high
types, which happens when the expected gains from trade are decreasing in 7.

Formally, the firm’s problem when it does not screen on the timing of its refunds, or equiva-
lently, when consumers learn simultaneously, is the problem analyzed by Courty and Li (2000),
and it is identical to (P!) except that (IC) is replaced with

U@) = E; [u(, t';v, 0] V.t 1" <1, aIcy)

that is, except that all of the consumers report their valuation v after they know it. We call this
problem (PICL).

The following lemma, which is also used in Section 6, helps us characterizes the expected
surplus function, U, for any mechanism. Its proof is in Appendix A.

Lemma 3. For any feasible mechanism in which U (t) is monotone, (1Cy) implies that

U’(t)s—/y(v,t)

v

aF (vt
%dv for almost every t. (10)

Using the definition of U and u, we can write the firm’s objective function as

y(v,

max)/f(v,t) (v—o0)y (v,t)dvdt—/U(t)h(t)dt. (11
v,t
vt

t
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Lemma 3 implies that if U (¢) is non-increasing then for any optimal policy the individual
rationality constraint must bind at 7', or U(T) = 0. Also, if we relax the firm’s problem by
ignoring the global incentive compatibility constraints, then it is also clear that (10), the local
incentive compatibility constraint, must bind. Equation (10) and U (T') = 0 imply

T ©
U(t):—//y(v,t) deds.
r v

This holds in both our problem and in (P(le), because (10) binds in both. Substituting this ex-
pression into (11) we can write the firm’s relaxed problem as

T T ©
oF
max / f,t)y(v—c)y(v,t)dvdt + / / / h(t)ﬂy (v, s)dvdsdt,
y(v.1) as

vt 01 v
subject to the constraint that y (v, #) non-decreasing in v. And using integration by parts the firm’s
problem can be rewritten

oF (v|t
max/((v—c)f(v,t)—i—(] —H(t))ﬂ>y(v,t)dvdt, (P2)
y(,0) at
vt

subject to the constraint that y(v, r) non-decreasing in v. Note that (P?) is a relaxation of both
(P') and (P(le) under the assumption that U (¢) is increasing.

By Lemma 1, it is optimal for a consumer to report her true type if she knows it, or v =
argmax, u(v',t’; v, 1), so E; [u(v, t';v, t)] > E, [u(IE, [v],7;v, t)], which implies that if (IC())
holds then so does (IC;)). This establishes the following lemma.

Lemma 4. If the solution to (P2) solves (P(le) then it also solves (P1).

In other words, if the constraints omitted from the firm’s problem when it does screen on time,
(PICL), are not binding, then time is not a useful screening device. The omitted constraints are
(IR) for t < T and the global incentive compatibility constraints, (ICy) and (E()).

A common solution strategy for problems like (P?) is to make assumptions that guarantee that

IF (v]t)
a1

is monotonically increasing. These assumptions would guarantee that the solution to (P?) is a
function y(v, t) that is non-decreasing in v and hence that y(v, t) € {0, 1} almost everywhere, or
equivalently that the solution is deterministic.

However, it is not necessary to impose these additional assumptions. Because (P?) is subject
to the constraint that y (v, ¢) is non-decreasing, it must have a deterministic solution even if (12) is
not monotonically increasing. This is because the firm is maximizing a linear objective function
over a closed convex subset of a linear space of functions, and it is well known that in this case
the maximal value must be achieved at an extreme point of the feasible set. An extreme point in
the set of nondecreasing functions from R — [0, 1] is a function that jumps from O to 1 at one
point, and its value at that point is immaterial for the integral (see for example Segal, 2003). So
a solution to (P?) exists in which y(v, 1) € {0, 1} almost everywhere.

w—of@n+0-H(@) 12)
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Using the above insight allows us to generalize the results of Courty and Li (2000), who do
not characterize general conditions under which the solution is non-decreasing, but instead focus
on special distributional examples in which it is possible to show the solution is non-increasing.

We begin with some definitions. First, we define Reverse MPS as follows: as the case in which
the consumers’ distributions can be ranked using a mean-preserving spread and the distribution
of valuations of consumers who learn earlier are a mean-preserving spread of the distribution of
valuations of consumers who learn later, implying that the expected gains from trade are higher
for consumers who learn earlier because the expected valuation is unchanged, but conditional on
v < ¢, expected valuations are lower, and conditional on v > ¢, expected valuations are higher.

Assumption 2 (Reverse MPS). E; [v] = u for all t, and
v
f[F(v'|t)—F(v’|t’)]dv’20, Vo, t' t;t >t, (13)

v
with strict inequality for some v, or equivalently,

v

OF (V'|t
/%du’fO,Vv,t, (14)

v

with strict inequality for some v, and strict equality for v = v.

In other words, Reverse MPS is satisfied when F (v|t) is a mean preserving spread of F(v|t’)
for all r < ¢/. Assumption 2 implies that there exists a 0 such that d F(0|¢)/dt = O for all ¢,
or equivalently that the distributions F'(v|t) cross at a common point. Equivalently, for all z,
dF(v|t)/dt <0 forall v < v,and dF (v|t)/dt >0 for all v > v.

We define Reverse FOSD as the case in which the consumers’ distributions can be ranked by
first-order stochastic dominance and the distribution of valuations of consumers who learn earlier
first-order stochastic dominates the distribution of valuations of consumers who learn later.

Assumption 3 (Reverse FOSD). F (v|t’) > F (v|t) for all v, t, t’ such that t' > t, with strict
inequality for some v.

The following Lemma shows that U is decreasing, so we can apply Lemma 4.

Lemma 5. Under Assumption 2 or 3, the optimal expected utility function, U(t), is non-
increasing.

Two additional assumptions are required to demonstrate that the solution to (P?) is the solution
to the more general problem, (P').

(1—H(t)) 3F (v]r)/dt
[10) FOlD

Assumption 4.

is non-increasing in t for all v, t.

3[3F(u\r)/ar]
Assumption 5. -0 > — 1_/12)(0 forall v, t.
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% > 0 by Assumption 3, so sufficient conditions for Assumption 4 are that

the monotone hazard rate assumption holds and that ‘%

Note that

is non-increasing in ¢.

The following is an application of Lemmas 4 and 5 and of Lemmas 3.3 and 3.4 in Courty and
Li (2000), and note again that the result generalizes Courty and Li (2000) who impose additional
distributional assumptions to prove that the solution is non-increasing.

Proposition 3. Under Assumptions 2 (Reverse MPS) and 4-5, if ¢ > 0 (alternatively, ¢ < v), the
solution to (P?) is a non-decreasing (alternatively, non-increasing) refund schedule, r(t), with
r(t) > c (alternatively, with r(t) < c). This solution is also the optimal policy in (P") and the
optimal policy in a model in which consumers learn simultaneously, (P(le).

Similarly, under Assumptions 3 (Reverse FOSD) and 4-5, the solution to (Pz), is a non-
decreasing refund schedule, r(t). This solution is also the optimal policy in (P') and the optimal
policy in a model in which consumers learn simultaneously, (PICL).

Proof. First, consider Reverse MPS. Clearly r(0) = ¢ (no distortion at t = 0), so if ¢ < v, then
F (r(0)]|0) /0t <0, and under Assumption 4, ¢;(r(¢),t) > 0 for all #, and under Assumption 5,
¢p(r(t),t) > 0 for all 7, so r'(r) <0 and r(¢) < c for all ¢, and by Lemma 4 the solution to the
relaxed problem is the solution to the original problem.

On the other hand, if ¢ > 9, then F (r(0)|0) /8¢ > 0, and under Assumption 4, ¢, (r(¢),1) <0
for all ¢, and under Assumption 5, ¢, (r(t),t) > 0 for all ¢, so '(¢) > 0 and r (t) > ¢ for all ¢, and
by Lemma 4 the solution to the relaxed problem is the solution to the original problem.

Optimality when consumers learn simultaneously follows from the observation that a deter-
ministic solution exists and from Lemma 3.4 in Courty and Li (2000), which shows that the
omitted global incentive compatibility constraints are satisfied provided that the solution satis-
fies ' () < O when r(z) < c and r’(t) > 0 when r(¢) > 0. And optimality when consumers learn
sequentially follows from Lemma 4.

Now consider Reverse FOSD. Using f(v|t) = f (v, t)h(t), the first order condition for (P2) is
f, )o@ (t),t) =0, where

bo.1) ((v o4 (1— H(t) dF (v|t)/8t> .

h(r) fln)
Using the implicit function theorem,
/ G (r (1), 1)
=1 7 15
=) (>

where Assumption 4 is sufficient to guarantee that ¢, < 0, and Assumption 5 is sufficient to
guarantee ¢, > 0, so r’(¢) is non-negative.

Optimality when consumers learn simultaneously follows from the observation that a de-
terministic solution exists and from Lemma 3.3 in Courty and Li (2000), which shows that the
omitted global incentive compatibility constraints are satisfied provided that the solution satisfies
r’(t) > 0. And optimality when consumers learn sequentially follows from Lemma 4. 0O

Reverse MPS implies that consumers who learn earlier have more dispersed valuations, a case
we contrast with Forward MPS analyzed in the previous section. Reverse FOSD implies that con-
sumers who learn earlier have greater valuations in the sense of first-order stochastic dominance,
a case we contrast with forward first-order stochastic dominance in the next section. Intuitively,
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both Reverse MPS and Reverse FOSD imply that the expected gains from trade are decreasing in
t, so a type T buyer is associated with the smallest gains from trade, and the optimal mechanism
satisfies U(T) = 0 and U’(¢) < 0. The lower types get positive rents because they can always
imitate type T and guarantee themselves a positive surplus.

6. When screening on the time is somewhat useful

So far we have considered two extreme outcomes. First, we considered conditions under
which screening on when the refund option can be exercised implements the first best, and sec-
ond, we considered conditions under which screening on when the refund option can be exercised
is not useful, and the firm not do any better than to treat all consumers as if they learned simulta-
neously. We now analyze a case in which screening on when the refund option can be exercised
1s useful, but the first best cannot be achieved.

Suppose consumers’ conditional valuation distributions, F'(v|t), can be ordered on [0, T'] with
respect to a first-order stochastic dominance (FOSD) and that consumers who learn later have
higher valuations. This is a natural assumption in many settings. For example, in an airline con-
text, business travelers often have higher valuations than the leisure travelers, and they typically
learn their travel needs much closer to the departure time.

Formally, we define Forward FOSD as follows:

Assumption 6 (Forward FOSD). F (vlt’) < F (|t) for all v, t, t’ such that t' > t, with strict
inequality for some v.

Assumption 6 and equation (5) imply that [E,;[max(v,c)], and as a consequence
E; [max (v — ¢, 0)], is weakly increasing in ¢, so Condition IEGT of Proposition 1 is satisfied.

When Condition SOV of Proposition 1 is also satisfied, then the firm allocates the good effi-
ciently and extracts all the surplus. However under Assumption 6, Condition SOV need not be
satisfied. For example, if v > ¢, then Condition SOV cannot hold. Indeed, under Assumption 6,
Condition SOV of Proposition 1 is violated, that is E; [v] > E, [max(v, ¢)], for some ¢ > ¢/, if
and only if

Er [v] > Eg [max(v, ¢)], (16)

because Ey [v] > E; [v] for all ¢ and [E; [max (v, ¢)] > Eg [max (v, ¢)] for all ¢, both of which
follow from Assumption 6.
In this section we assume that equation (16) holds:

Assumption 7. Condition SOV of Proposition 1 is violated.

Again, when Condition SOV is violated, the firm cannot extract all of the surplus — if the firm
offered the complete information contracts, then even with restrictions on when the return option
would be exercised, type T would still imitate type 0.

Under Assumptions 6 and 7, the optimal mechanism has several interesting features. First, we
show that both local and global incentive compatibility constraints bind. The highest type, type T,
is offered a price that makes her indifferent between reporting her type as type T or type 0, or
more precisely, indifferent between reporting 7' and reporting any ¢ in an interval [0,oc]. So
downward global incentive compatibility constraints bind for type 7. The rents given to type T
make it attractive for consumers in an interval [z, T) (where T > o) to imitate type 7', so the
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optimal mechanism offers these consumers a lower price as well, so the upward local incentive
compatibility constraint binds for these consumers. For these consumers, the downward global
incentive compatibility constraints do not bind because the cost of imitating type O is higher for
them (they must give up even more option value by foregoing the option to return) so they prefer
instead to imitate type T (they also pay less than type 7 when they report truthfully).

Second, as is evident from the above discussion, incentive compatibility constraints bind in
both directions, that is, both upward (local) and downward (global) incentive compatibility con-
straints bind.

Third, we find that the optimal mechanism includes both upward distortions in the allocation
for some consumer types and simultaneously downward distortions in the allocations for other
consumer types. Type O is offered a higher refund and a smaller allocation relative to the complete
information contract (a downward allocation distortion), increasing the ex ante price paid by
type 0 and reducing the incentive for type T to imitate type O (because she pays the ex ante
price but does not ever enjoy the refund). And in an interval (z, T] consumers are offered a
lower refund and a greater allocation (an upward allocation distortion) relative to the complete
information contract, reducing the incentive for consumers to imitate higher type consumers.
While other papers have shown the distortions can go in more than one direction, even in the
same mechanism (see for example Pavan et al., 2014), we think that the simultaneous presence
of upward and downward distortions in our paper is particularly natural and intuitive.

Finally, the upward distortion increases with #, so we find there is a distortion “at the top” for
the buyer with the largest ex ante highest willingness to pay. This counterintuitive result arises
because the global incentive constraint implies that type T gets enough additional rents that the
direction of the binding local incentives constraints is reversed. Distorting the allocation “at the
top” for type T reduces the information rents captured by consumers in the interval (z, T'].

In what follows, we first solve a relaxed version of the seller’s problem and then (in Proposi-
tion 7) show that its solution satisfies all the constraints of the original problem. As intermediate
steps, we first prove that the expected surplus U (¢) of type ¢ is non-decreasing under FOSD and
then show that we can restrict attention to deterministic allocations.

Lemma 6. The optimal expected utility function, U (t), is non-decreasing.

Lemmas 3 and 6 imply

JIF (v|t
0<U' (t)<— / y (v, 1) %Hdv for almost every ¢, 17)

v

and together with Lemma 2, we use equation (17) to further relax the seller’s problem, which we
call (P%).

U(t),u(v,t),y(v,t)

max /(v — o)y (v, 1) f (v, 1) dvdt — f U(th(t)dt, (P3)
v,t

t

subject to
U(t) >0forallt, (IR)
(v, 1)

0 ~
y(v,t)= MT and y (v, t) is non-decreasing in v, (Icy)
v
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oF (vt ~
0o<U' (t) <— / y (v, 1) %Hdv for all ¢, (ICp)
v
U(T)>U(t; T) forall ¢, ach
0<y,t)<lforallv,z. F)

The U(¢) in the argument of the firm’s objective function is redundant since the firm still
chooses x and y, or equivalently u (v, t) and y (v, t), which determine U (¢) and U(¢; ¢') from
equations (3) and (4).

The following proposition partially characterizes the optimal solution to the relaxed problem,
and its proof is given in Appendix B.

Proposition 4. Under Assumption 6 there exists a deterministic solution, y(v,t) € {0, 1}, for all
v, 1, to the relaxed problem (P?). In particular, for each t, there exists a cut off point r (t) such
that y (v, t) = 1 if and only if v > r (t). Moreover, there exists T such that

0 if t<r,

U= 5 !
® {—f:f,mzwvds r i

Proposition 4 establishes the existence of an optimal solution. The first part of the proof estab-
lishes the solution is deterministic, y(v, t) € {0, 1}. We use the existence of a non-deterministic
solution to define a new choice problem for the firm, and then we demonstrate that the new
choice problem has a deterministic solution that does at least as well as any non-deterministic
solution and satisfies the constraints. The proof uses the fact that the unconstrained problem has
a deterministic solution (see the discussion in Section 5). B

The second part of the proof establishes the existence of a threshold T below which (IC) binds
at its lower bound and above which (INCO) binds at its upper bound. Note that if Assumption 7 is
violated, then the proposition still holds, but the first best is achieved, and t =T .

The next proposition holds when the mechanism is deterministic and is instrumental in char-
acterizing the optimal contract. The proof is in Appendix B.

Proposition 5. Under Assumption 6, we have that for all t

U@;T)=Er [v]l—r @) Iz, v]-ry=0y + U () — / (v—r@®) fWwlt)dv, (18)
r(t)

where the indicator function 1(y>qy is 1 if x > 0, and zero otherwise.

Note that by Proposition 4, the second term, U (¢), is equal to zero for + < t. And more
importantly, if E7 [v] — r (#) < O then Equation (18) implies U(¢; T) < U (¢). Since Proposi-
tion 4 guarantees that any optimal mechanism satisfies U (T') > U (¢), this means that whenever
Er [v] —r (t) <0, the incentive constraint U (T') > U (¢; T) can be ignored. So if type T deviates
and reports type ¢, it must be that type 7 will not return the good (or E7 [v] — 7 (¢) > 0). We use
this below when we further relax the firm’s optimization problem.

We can now further simplify the firm’s relaxed problem, (P*). First, using Proposition 4 and
Proposition 5, we replace U(t) and U(¢; T) in the objective function and in the constraints.
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Note also that these functions clearly satisfy (IR) and (l?lo) so these constraints can be dropped.
Also, Proposition 4 implies that the optimal y(v, t) can be represented by a function r(¢) where
y(v,t) =1if v > r(¢) and O otherwise. It follows that we can write the firm’s problem as choos-
ing T and r(¢) on [0, T']. That is, without loss of generality we can restrict our attention to
contracts in which a type ¢ consumer makes an ex ante payment for the good, which we will
denote by p(¢), and then receives a refund, which we will denoted by r(#), if she returns the
good at time ¢ after learning their valuations (in which case she will return the good if and only if
v < r(t)). This menu of expiring refund contracts clearly satisfy (F), so this constraint is dropped.
Finally, we ignore (1?3,) and then show in Proposition 7 that the solution to the relaxed problem
satisfies the ignored constraints.

After integrating the objective function by parts and dropping (IE,), we can write the firm’s
relaxed problem as (PH):

T v
max //f(v,t)(v—c)dvdt
{r.r(}

0 r()

1= HW®IF @l /ot \
+//f(v,t)(v c+ o 70l )dvdf (P

subject to U(T) > U (¢'; T), which, using the relaxed definition of U (¢; T') from Proposition 5,
becomes

T © %
—//@dvdtzﬂ% wl—r()-U@ — /(v—r(t’))f(v|t’)dv,‘v’t’
T r(t) r(t’)
<T. ach

Proposition 6 characterizes the optimal solution to the problem (P*) and shows that the optimal
refund schedule to be decreasing in 7. Assumptions 8 and 5 are sufficient conditions.

Assumption 8. W is non-decreasing in t for all t and all v € [y , c].

Assumption 9. W is non-increasing in v for all t and all v € [y, c].

Intuitively, Assumption 8 requires that the informativeness of a consumer’s type about her
valuation weakly increases with her type (for all valuations less than c).

Proposition 6. Under Assumptions 6-9 the solution to (P*) is characterized by two thresholds o

and T, such that 0 <o <t < T and (L(;({) binds for t < o and not otherwise. The optimal r(t)
is continuous and satisfies:

1. fort <o, r(t) >c, r(t) is non-increasing, and r(t) is the unique solution to (Jv(gg),'
2. fortelo, 1], r(t) =c; and
3. fort > 1, r (t) is strictly decreasing.



752 M. Akan et al. / Journal of Economic Theory 159 (2015) 728-774

Note that this solution exhibits both downward distortions in allocation (a return price dis-
torted higher than the complete information price) at and near t = 0 and upward distortions in
allocation (a return price distorted lower than the complete information price) at and near t = 7.

In the proof we further relax the firm’s problem by considering only the downwards incentive
constraints are for type T, who is indifferent between reporting type 7 and type ¢ € [0, 0] at
the optimum, and considering only the upwards local incentive constraints for type ¢ € [z, T].
We then check that the omitted local and global incentive constraints are satisfied. Type T is
most tempted to report her type as type 0, and setting 7 (¢) > ¢ reduces the rents paid to type T'.
However the need for the distortion diminishes as  increases. At o the global incentive constraint
for type T no longer binds and no distortion is needed (of course o goes to 0 as the option value
gets larger so Assumption 4 no longer holds). Again, the constraint does not bind at 7, and
becomes increasingly binding as ¢ approaches 7', so the distortion increases, and r(¢) falls, as ¢
increases.

Although Assumptions 8 and 9 are sufficient to ensure that 7’ () < 0, they are not necessary.
Indeed, the condition r’ () < 0 is itself sufficient but not necessary for proving that (lQ(T) ) is slack
on [7,T) (see Lemma 7 in Appendix B).

Given the cutoff points {r (t) : 0 <t < T} characterized in Proposition 6, the payments can be
written as follows:

p@t)—r@) if v<r(),

x(””)z{p(t) it v=r(,

where again we interpret p(¢) as an upfront payment and r(¢) as a refund which is optional and
must be exercised at time 7. Note that the expected surplus of type ¢ consumer can be written as

Ut)y=—=(p@®) —r@®)+ / (I - F(ln)dv. 19)
r(t)

Then, since U (t) =0 for ¢ € [0, t], we write

]
pt)—r()= / (1—=F(v|t))dv fort <.
r()
For ¢t > 7, we write the following by taking the derivatives of both sides of (19),
0]
pPoy—r')y==U@®)—r'®) A —F @) - /
r(t)

oF (v|t)
at

dv. (20)

Therefore, we can calculate p (t) — r(¢) for t > 7 from (20) and the boundary condition that

p(m)—r(r)= / (1 —F (v|r))dv.
r(7)

We interpret {(p (t),r (¢)) : 0 <t < T} as a menu of expiring refund contracts where a type
t consumer is charged the initial price p (¢) and is offered a refund of r(¢) if he chooses not to
consume the good at (or before) time z. In other words, the refund r(¢) expires at time 7.
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The following proposition establishes that in the case of forward first-order stochastic dom-
inance, this refund contract, {(p (¢),7 (¢)):0 <t <T}, is an optimal contract in the seller’s
original mechanism design problem, (PO), that is, that the contract satisfies the omitted con-
straints. The proof is standard and follows the proof in Courty and Li (2000); it is included in
Appendix B.

Proposition 7. Under Assumptions 6-9 there exists a solution {x(v,t), y(v,t)}, to the firm’s
mechanism design problem which can be implemented as the menu of expiring refund contracts
{(p@),r () :0<t <T} characterized above.

The following corollary investigates how the optimal initial price {p (f) : 0 <t < T} changes
over time and is proved in Appendix B.

Corollary 1. The optimal menu of refund contracts {(p (t) ,r (t)) : 0 <t < T} has the following
properties: The optimal initial price p (t) is constant for t < o and is strictly increasing with
rate p’ (t) = — fcv %du fort € [o, T). Also, the price is strictly decreasing with rate p’ (t) =
r'(¢) F (r (t) |t) for t > ©, while p (T) > p (¢t) for all t < o. Finally, the effective price p (t) —
r(t) F (r(t)|t), defined as the expected transfer from the consumer to the seller, is increasing
int.

The interval [0, o) is the range in which, like Courty and Li (2000), allocations are distorted
downwards in order to extract more profit from (or give less surplus to) type 7. The interval
(t, T] is the range where allocations are distorted upwards, because consumers in this range are
receiving positive surplus since they would otherwise imitate type 7. Distorting their allocations
upwards reduces the incentive of these consumers to overreport their valuations.

7. Concluding remarks

This paper is the first to examine optimal pricing when consumers vary in when they learn
their valuations over time, and when the time that consumers learn their valuations is correlated
with the ex ante distribution of their valuations. Sequential learning gives the firm an additional
instrument with which to screen consumers. In some cases this instrument enables the firm to
implement the first-best allocation and extract all of the expected surplus from the consumers
using ex ante contracts. In particular, the seller can implement the first best when consumers
who learn later have more dispersed valuations, or when consumers who learn later have larger
valuations and the option value of waiting to commit is large because the ex post gains from trade
can be negative. In other cases, screening on the expiration of the refund option is not profitable,
and the profits are the same as when buyers learn simultaneously.

Two aspects of this pricing problem are worth highlighting. First, a natural asymmetry exists
because it is easier to charge a higher price to consumers who learn late than to consumers who
learn early. This is because consumers who learn early can costlessly imitate consumers who
learn late, but not vice versa. And second, unlike many screening problems, imposing restrictions
on when they exercise their return option, need not be distortionary.

Much work remains to be done in characterizing optimal pricing when consumers learn over
time. First, not all distributions of valuations and learning fit into the cases we analyzed. Second,
and more importantly, when learning takes place and the ex ante distribution of valuations are
unlikely to be perfectly correlated. In more realistic settings consumers are likely to have multiple
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dimensions of heterogeneity, which could significantly increase the complexity of the optimal
mechanism. Third, we assumed that consumers learn instantaneously while it is more realistic to
suppose that learning takes place gradually.

Allowing for gradual learning is difficult because the amount of information reporting in-
creases significantly, but notice that it should not significantly alter the consumers’ incentives.
That is, holding the mechanism fixed, we can allow the consumer to have a little more informa-
tion just prior to time ¢ without violating any binding incentive constraints because if consumers
are going to deviate and pretend to be a lower type, they do not deviate locally. Since local down-
ward constraints are slack, giving consumer more information shortly before they report their
valuation does violate the constraints (see Ata and Dana, forthcoming for additional discussion
of gradual learning).

Finally, we have focused on a mechanism design analysis which emphasizes the role of ex
ante contracts and return options as mechanisms for extracting surplus. However, many firms
that face consumers who learn over time may not be able to use ex ante contracts. This could
be because of transaction costs, competition with rivals, or because consumers arrive to late for
initial contracting (though late arrival may itself require justification using transaction costs).
Further analysis of optimal pricing in such environments is clearly needed.

Appendix A. Proofs of the results in Sections 3 through 5

Proof of Proposition 1. The complete-information allocation is y(v,#) = 1 if v > ¢ and
y(v, t) = 0 otherwise. The complete-information payments, x (v, t), are not unique, but must
extract all of the ex-ante consumer surplus, so

E; [x(v, )] =E; [y (v, 1)] :/vf(vlt)dv,‘v’t. (A.])

To prove the “if” part of Proposition 1, first note that Lemma 2 requires that du(v,t)/dv =
y(v, t) almost everywhere, so given y(v, t), the payments x (v, t) satisfies (IC,) if and only if for
some p(t)

. p ([) if v > c,
x(v,t) = { p(t) —c otherwise. "

for all v, ¢. So the unique payments that satisfy (A.1) and (IC;) are

E;[max (v —c¢,0)]+c¢ ifv>c

x(v,t) = { E; [max (v — ¢, 0)] otherwise. (A

Clearly the above mechanism, (x (v, t), y(v, t)), is individually rational since expected consumer
surplus is 0. And clearly (IC;) holds since conditions (i) and (ii) of Lemma 2 are satisfied. Next,
ICy is satisfied if Condition IEGT holds because x (v, 7) is increasing in ¢ and y(v, ¢t) does not
depend on the reported ¢, so U (¢'; t) < U (¢) for all ¢’ > ¢. Finally, IC, is satisfied under Condition
SOV because for all ¢’ < ¢,

U(t';t) =E;[v] — Ey[max(v — ¢, 0)] — ¢ (A4)
and U(¢) =0, so U(t'; ) < U(¢) if and only if Condition SOV holds.
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To prove the “only if” part of Proposition 1, we argue by contradiction. Suppose that the seller
can implement the first-best solution but Condition IEGT is not satisfied. If Condition IEGT is
violated, there exists a type ¢’ > ¢’ such that

E; [max (v — ¢, 0)] > E;» [max (v — ¢, 0)] (A.5)

If type ¢" misrepresents her type as ¢” at time zero, the expected utility, U (¢”; ¢’), she gets is
equal to

/[vy (v, ") = x (v.t")] £ (vit') dv :/vf (vltydv —Ep [x(v,1")],

v

=fvf (vIt")dv — p (") + cF (c|t'),

=E, [max (v, )] — p (1),
> E [max (v, c)] — p (t").

=/vf (vIt")dv — p (") + cF (clt”),

= / of (vIt")dv —Ep [x(v, ],

=0,

where the strict inequality follows from (A.5) (and the fact that E; [max (v, c)] is equal to
E; [max (v — ¢, 0)] + ¢), and the last line follows from (A.1). Thus, type ¢’ has an incentive
to misreport her type as ¢” at time zero and (ICy) is violated, which contradicts the assumption
that the seller can implement the first-best solution. Hence, Condition IEGT is necessary for
implementing the first-best solution.

Next, suppose that the seller can implement the first-best solution but Condition SOV is not
satisfied. Then there exist types t” > ¢’ such that

E;» [v] > Ey [max (v, ¢)]. (A.6)
Clearly this implies IE,» [v] > c. If type 1" misreports her type as ', her expected utility U (¢'; 1)
is

By [vy (B [v], 1) — x (Bpr [v], ') ] =By [v] — x (Epr [0], 1), (A7)
since from Lemma 1, type ¢” will report her valuation as E;s [v] at time ¢’ and we have
y (Ei [v], 1) =1 because E,» [v] > c. Then,

U(t';t") =Ep[v] —x (B [v]. 1),

=E/[vl—p (t/) )
> Ey [max (v, ¢)] — p (')

v

:/vf (wl)dv — p (') + cF (clt).

c



756 M. Akan et al. / Journal of Economic Theory 159 (2015) 728-774

= / vf (v|t’)dv —Ey [x (U’t/)]'

-0,

where the strict inequality follows from (A.6) and the last line follows from (A.1). Thus, Condi-
tion SOV is also necessary for implementing the first-best solution. 0O

Proof of Lemma 5. The following assumption on the distribution of v and ¢, is clearly implied
by Assumptions 2 and 3:

Assumption 10. For all o and for all t,
]

OF (V|1
/ ;1; 9 > 0. (Condition SDEGT)

o

Condition SDEGT is short for strong decreasing expected gains from trade, and Assump-
tions 2 and 3 each clearly imply Assumption 10. In contrast to the definition of Condition
IEGT, the inequality reversed (hence decreasing as opposed to increasing). In addition Condi-
tion SDEGT is stated just for all o, while Condition IEGT is stated just for @ = c¢. So Condition
SDEGT is stronger than just decreasing expected gains from trade. Also, note that Assumption 10
is the same as second-order stochastic dominance if [E,[v] is independent of ¢, but more generally
is different from second-order stochastic dominance because the range of integration is [, U],
not [v, «].

Assumption 10 clearly implies that

b
/ [FQ/'|t) = FQ'It)]dv' = 0,Yv, 1,1 > 1, (A.8)
o

or E; [max (v — a, 0)] < Ey [max (v — «, 0)].
Note that (IC) implies that for ¢ > ¢/,
U —-UE)<U@) —U(t; 1), (A.9)

and Lemma 2 and integration by parts implies

U@ - Uty = / u(, O [F 0l — fle]dv

= —/y(v, D) [Flr) — F(lt)]dv, (A.10)

where the integral exists (for Reiman—Steltjes integration) because F(v|r) — F(v|t’) is continu-
ous, and y is of bounded variation (y is bounded and weakly increasing in v); see Theorem 30.2
and Corollary 30.3 on page 229 of Bartle (1975). Using integration by parts again (see Theorem
29.7 on page 218 of Bartle, 1975),
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~ / Y. [Flt) — Fl)]dv=—(y@,1) - y(@.1) f [FQ'1t) — F'))]dv/

+/dy(u,t)/[F(v/|t)—F(v’|t/)]dv/dv

v

<~ (@0 - yw.1) / [F'In — FO/)]dv’

+/dy(v,t)/[F(v/|z)—F(v/|ﬂ)]dv/=o, (A.11)

where the inequality in the expression above follows from Assumption 10, or more precisely
(A.8), which implies that

v

/[F(v’|t)—F(v’|t’)]dv’5/[F(v’|t)—F(v’|t’)]dv’, (A.12)

v v
for all v, and the final expression is zero because

y(@,0) =y, t)=/dy(v,t)- (A.13)

Equations (A.9), (A.10), (A.11) and (A.12) show that under Assumption 10, (ICo) implies
that U (¢) is monotone decreasing. 0O

Proof of Lemma 3. The monotonicity assumption implies that U is differentiable at almost
every t. Restricting attention to those points where U (-) is differentiable, note by (ICy) that, for
any type t and i > 0,

U(t)—U(t—h)SU_(t)—U(t;t—h)

= f [vy (v, 1) —x (v, D] (f WIt) = f (vl — h)) dv,

from which it follows that

<tim [ [ @0 =¥ @.0] (7 0l = 7 @l =)o

v

U@ —-U@—h)
Iim———=
) h

- fuwn 2y,

v

. i oF (v|t)
= /y(v,t) 5 dv

v

where the last equality follows from Lemma 2 and integration by parts. O
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Appendix B. Proofs of the results in Section 6

Proof of Lemma 6. To prove that U’ (r) > 0 for almost every ¢, we argue by contradiction.
Suppose U is an expected utility function resulting from an optimal mechanism and there exists
some interval (t1, 72) such that U’ (#) < 0 for t € (11, 72). We show that types ¢ € (11, 12) strictly
prefer their own contract to those of any other type. That is, the constraint (IC) does not bind
for those types. We first prove that for ¢ € (1, 72),

U@)>U(t';t) =E, [u@ [v],1;v,0)] forall ' <t.

Suppose there exist 7 € (11, 72) and ¢’ <t such that U(r) = E; [u(E, [v],;v,1)]. Then, for
& > 0 small enough, we obtain

Ut+e) <U@)=E [u@® ], t;0,0)] By [u@Erpe [v], 150, 1+ 8)]
=U (st +e), (B.1)

implying that (IC;)) constraint is violated for type ¢ 4 ¢, which contradicts the supposition that U
is an expected utility function resulting from an optimal mechanism. Note that the strict inequal-
ity in (B.1) is true since U’ (t) < 0 for € (71, 12). The weak inequality follows from Assump-
tion 6 and the fact that u (-, #’; v, ) is non-decreasing from Lemma 2. Hence, for ¢ € (11, 12),
U(t)>U (t;1) forall ¢/ <r.

Similarly, we prove that U (¢) > U (t’ ; t) for all 7 € (t1, T2) and ¢’ > . Suppose there exist
t € (11, ™) and ' > ¢t such that U(t) = E; [u (v, t'; v, t)] Then, for ¢ > 0 small enough, we
obtain

Ult+e)<U@®)=E [u(v,t;v,1)] <Bye [u(v. 50,0 +6)|=U (11 +¢),

since U’ (1) < 0 for t € (1, 2), Assumption 6 is satisfied and u (-, t's v, t) is non-decreasing,
contradicting U being an expected utility function resulting from an optimal mechanism. Hence,
fort e (11, 1), U@) > U (t’; t) forall ¢/ > r.

Then we can decrease U (¢) slightly over the interval (1, t2) by increasing the payments
and leaving the allocation unchanged such that (IC,) and (ICy) constraints are still satisfied for
types (71, 72). This modification also discourages types [0, T'] \ (71, T2) from imitating types
t € (11, 72 ) since the payments made by types (t1, 72) are inflated. Hence, this modification
of the expected utility function is not only feasible (i.e. satisfies all IC and IR constraints) but
also strictly improves the objective. Contradiction to U being a utility function resulting from an
optimal mechanism. Hence, U’ () > 0 for almost every 7. This combined with Lemma 3 gives
(7. o

Preparation for Proof of Proposition 4. Let Gy, G, and G, be linear functionals of y, and let
N be a convex set of functions, that characterize the following primal optimization problem:

b* = mi/{lfGo(y) subject to G;(y) <0, fori =1,2. Pp)
ye

Define the Lagrangian L(y, A) for y € N and A € R? as:

L(y, M) =Go(y) +21G1(y) +22G2(y), (B.2)
and let

g = )jél/ffL(y, A). (B.3)
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The dual optimization problem of (Pp) is defined as follows:

d* =supg(A) subject to A; >0, fori =1,2. (Pp)
A

Assumption 11 (Slater’s condition). There exists ¥ € N such that G;(¥) <0 fori =1, 2.
The following proposition is used in the proof of Proposition 4. It’s proof is in Appendix C.

Proposition 8. Under Assumption 11 (Slater’s condition), there exist multipliers 1* > 0 such that
y* is optimal for (Pp) if and only if y* minimizes L(y, \*), and Z?:] AGi(y)=0.

Proof of Proposition 4. Let U, y. (and the associated u,) be an optimal solution to (P3) with
the corresponding ex-post utility function denoted by u... We will use this solution, which need
not be deterministic (i.e., y € {0, 1}) to demonstrate the existence of an alternative deterministic
allocation, y, for which Uy, y is a solution to (P3). In particular, the new solution will keep the
expected utility function U, unchanged, while modifying only the allocation probabilities. This
will demonstrate that for each ¢, there exists a cut-off point r (¢) such that the modified allocation
probabilities satisfy y (v,1) =1ifv>r(f) and y (v,1) =0if v < r (¢).

Without loss of generality, we assume Yy, is not almost everywhere equal to zero and y, is not
almost everywhere equal to one (otherwise y, is deterministic except at one end point, since Yy
is non-decreasing, which implies that y, is already a deterministic solution). This implies that
y«(v, 1) € (0, 1) on a subset of [v, v] that has positive measure.

Define an alternative allocation y (v) as the solution to the following problem, denoted by
(P4), and note that for notational brevity, we suppress the dependence of y and u on the type, t:

Choose the control y(v) and ug, and hence the ex-post utility #(v) to solve

v

max / (w—c) flt)y@dv (Pa)
yEN,ug
subject to
u (R) = uo,

u)=y(@),vo,

/f(vll)u () dv=Us (1),

/[%}y@dvz[[%}ﬁ (v) dv,

v v
u (V) <uy (v),
where D = {y: y is nondecreasing, and 0 < y(v) < 1, Vv}, and where U, (t) and u, (v, t) are

taken as constants. Note that the initial condition uq is a decision variable, and hence, it is a
“free” variable. It follows from integration by parts that
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/f(vmu(v)dv:u(ﬁ)—fF(vv)y(v)dv,

so the third constraint can be rewritten as
v
—/F(vlt)y(v)dvzU*(t)—u(ﬁ)- (B.4)
v

It is crucial to observe that because u is a free variable, we can combine the second, third, and
fifth constraints in (P 4) and replace them with the following constraint

]
—/F(vlt)y(v)dvzU*(t)—u*(ﬁ), (B.5)
v
(P4) can be written as
min Go(y) subject to G;(y) <0, fori =1,2 (ﬁA)
yeN

where

Go(y)=—/(U—C)f(v|t)y(v)dv,

Gl(y)=/F(v|t)y(v)dv+U*(t)—u*(f)),

and

v o}

oF oF
Gz()’)=/ a(tvmy(v)dv—/ a(tvlt)y*(v)dv.

v v

Note that Gy, G, and G, are linear functionals, and that A/ is convex. Also note that As-
sumption 11 (Slater’s condition) is satisfied for y = 0. This is because y, is not identically zero,
so the second term in G2 (y) is strictly negative for all y, and for y = 0 the first term is equal to
zero, so G2(y) < 0 And because y; is not identically equal to zero and y is not identically equal
toone, Uy < uy, 50 G1(y) <0 for y =0.

So for every ¢, either the solution is identically zero, or identically one, or the solution solves
(lN)A). But by Proposition 8, any solution to (P 1) must also minimize Go(y)+A1G1(y) +A5G2(y)
and satisfy 21'2:1 A7Gi(y) =0 for some A*.

So if y is not identically zero or identically one, then there exist multipliers Ay, Ay > 0 such
that any solution y(v) solves

mé}\?}/ <(U—C)f(v|l) —AMF () — A2

S

AF (v|t)
at

) y()dv, (B.6)

v
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but this clearly has a deterministic solution. As observed in Section 5, the firm is maximizing
a linear objective over a closed convex subset of a linear space of functions, and the maximal
value must be achieved at an extreme point of the feasible set. Here the extreme point in the set
of nondecreasing functions from R — [0, 1] is a function that jumps from O to 1 at ope point,
that is a deterministic solution. So for each ¢, there exists a cutoff point »(¢) such that y(v,t) =1
if v >r(¢) and y(v, t) =0 otherwise (i.e., v < r(t)).

As argued above, these allocation probabilities, y, also constitute an optimal solution to (P 4).
Also note that for each solution to (P 4 ), since the initial value, u, is free, we can decrease ug and
make the constraint (B.4) bind. Hence, without loss of generality we will consider only solutions
in which (B.4) binds.

For type t, the modified solution will have U, (¢) as the expected utility and y (v, t) as the
allocation. (The modified ex-post utility function u (v, t) is also derived from the above optimal
control problem.) This modified solution is clearly of the desired form and weakly improves the
objective of (P3). To establish that it is indeed an optimal solution to (P3), we only need to check
the constraint (@g ). To check this, note that u (v, t) < u, (v, t) (for all ¢) by the last constraint
of (P4) and that du (v, t) /ov = 1 for v such that u (v, t) > 0, where the latter assertion follows
since u (v, ¢) < 0 for all ¢. To see why u (v,7) < 0 for all 7, notice that if u (v) > 0 and the
constraint that

/f(vll)u (v)dv = Uy (1)

does not bind in problem (P 4), we can decrease u (y) and increase the objective of the original
mechanism design problem. If u (y) > ( and the constraint that

/f(vlt)u (v)dv = Uy (1)

binds, then it should be that U, (¢) > 0. Then, we should have U, (t’) > 0 for all ' < ¢ as any
type t' <t could get a strictly positive surplus by pretending to be type ¢. As U, is increasing,
this would imply that Uy (1) > 0 for all 7, in which case decreasing u (v, t) uniformly for all
types would increase the profits, which contradicts u(v, t) > 0.

Since u (y, t) < 0 for all ¢, it must be that u (v, 1) < u4 (v, t) for all v such that u (v, t) > 0.

The constraint (Eg ) can be rewritten in a more transparent format as follows:

Ue (T) z max {u (Er [v], 0}, (B.7)

where we obtained (B.7) by rewriting the constraint (Eg ) and using the fact that type T reports
his valuation as Er [v] and gets a utility of u (E7 [v], ) if he pretends to be type ¢. Then (Eg )
holds trivially if u (Er [v], ¢) < O for all ¢ since U, (T) > 0. Suppose that there exists 7 € [0, T]
such that u (E7 [v], t) > 0. The constraint (@g ) still holds since

Us (T) > m[ax{u* (Er [v], )}, (B.8)

> max {ux Er [v], D)}, (B.9)
te{t:ux(Er[v],7)>0}

> max {u(Er [v], D)}, (B.10)

T tel{tuyErv],T)=0}
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> max {uEr[v], )}, (B.11)
te{t:u(Eyr[v],r)>0}
=mtax{u (Er [v], D)}, (B.12)

where the inequality in the second line is true since maximization is carried out on a smaller
set than the first line. The inequalities in (B.10) and (B.11) follow from the fact that u (v, t) <
uy (v, t) for all v such that u (v, t) > 0. Finally, (B.12) is true since type T would not find it
profitable to deviate to any type ¢ such that u (E7 [v],#) < 0. This proves that the modified
solution satisfies (Eg ) and completes the first part of the proof.

For the remainder of the proof, we will use U, y to denote the optimal solution of (P3) where
vy (v,1) € {0, 1} for almost every v, . To establish the second part of the proof first note that
U (0) = 0; otherwise we can decrease U uniformly over [0, T'] and the objective improves. Next,
we prove that we must have

7
doF (v|t
U @) e 0,—/ B(tv| )dv for almost every ¢. (B.13)
r(t)

Lemma 3 and Lemma 6 and the first half of the proof imply that
]

0=U'(1) =~ /

r(t)

IF (v|t)

dv for almost every ¢.

Note that using integration by parts and recalling that U (0) = 0, we can rewrite the objective
function as follows:

/f (,0) [x (v, 1) —cy (v, 1) ] dvdt
v,t

r
=/f(v,t) (v—c)y(v,t)dvdt—f(l—H(t))dU(t) (B.14)
v,t 0

To prove (B.13), we argue by contradiction. Suppose that instead there exists some interval
[t1, 2] such that

7
oF (v|t
0<U/(t)<—/ a(tvndv for t € [11, 12].
r(1)

Then the objective function can be improved by replacing U with U which is the same
except that U’ (1) = 0 for t € [y, 71 +¢] for & > 0 sufficiently small and appropriately in-

creasing U’ (t) (which can be done so that U(rz) = U(1) since U’ (t) < —frﬁ(t) aFgflt)dv for

t € [t1, 2]). So fr? du @) = fr? dU (t). This modification improves the objective in (B.14)

f:lz (1—H (1)) dU(t) =(1-Hm)U(rn)—-U(t)) < f;lz (1 — H (t))dU(t), which is because
1 — H (¢) is decreasing. And it can be achieved by changing u (g , t) on the interval [t1, 73] appro-
priately so that y (v, ¢) remains the same. Then, the constraints of (P3) including (Eg ) still hold
since U (T') remains unchanged and U (¢) strictly decreases for ¢ € (11, 12), while U (¢) does not
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change elsewhere, and hence type T finds the deviation to types (71, 72) strictly less profitable.
Thus, (B.13) follows.

Finally, we show that if U’ (¢) > O for almost every ¢ € [t/, t+ 81] for some ¢’ and &1 > 0,
then U’ (¢) > O for almost every ¢t > t’. Suppose not, i.e., there exists an interval [}, 2] C [t/, T]
over which U’ (r) = 0. Then, following the reasoning in the preceding paragraph, we can modify
U such that U’ (t) =0 for ¢ € [t’, t'+ 82] for some 0 < &3 < &1 while keeping U (12) the same
as before, which improves the objective function and hence, leads to a contradiction.

Define 7 € [0, T] as the essential infimum of types for which U’ (¢) > 0. Formally,

t=inf{t' €[0,T]: U’ (t) > O for almost every 7 € [¢', 1’ + ¢) for some & > 0},

where T = T if U’ (t) = 0 for almost every t and T = 0 if U’ (¢r) > 0 for almost every ¢. Then, we
have U’ (r) = 0 for almost every ¢ < 7, and

7
oF (v|t
U @t)=— / a(;)| )dv for almost every ¢ > T.
r(r)

The result follows from this since U is Lipschitz continuous (and hence absolutely continu-
ous). O

Proof of Proposition 5. It follows from Lemma 2 and Proposition 4 that

1 if v>r(), du (v, 1) 1 if v>r(@),
y(@, )= . an = . (B.15)
0 if v<r(), ot 0 if v<r(),
from which it follows that
x(v,t) if v>r(),
x (v, 1) = @,9) ) © (B.16)
x(y,t) if v<r(),
where x (v, 1) = —u (v.1) and x (,7) = ¥ — u (v,1). Moreover, it follows from (B.15) that

w(@,t) —u(v,t) =0 —r (). Thus, x (V,7) = x (v, 1) + r (1). In other words, defining p () =
x (v, t), we have

_Jr@® if v>r(@),
x(v’t)_{p(t)—r(t) if v<r(). (B.17)

Then, for all z,

U@)= / u(,t) f(vlt)dv = / vf wt)ydv—p@)+r@) F @ @)]|t).
v r(t)
Solving for p (¢), we obtain
p () =E; [max{v,r ()}] - U (). (B.18)

Recall that U (1;T) = E; [u (Er [v],¢t;v,T)]. That is, U (;T) = Er[v]y (Er[v],t) —
x (E7 [v], t). It follows from equations (B.17) and (B.18) that

x(Er[v],t) =E [max{v,r )} - U @) —r @) Lg,;[v] - r@)<0}»
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and clearly (B.15) implies y (E7 [v], ) = g, [v] - r(1)>0} SO it follows that
U@ T)=(Er [vl—r @) Y g -r@n=0p + U () — / (v —r@®) f @|r)dv. m]

r(t)

Preparation for Proof of Proposition 6. The following lemma facilitates the proof of Proposi-
tion 6.

Lemma 7. If r(t) is decreasing over [t, T], then (IC ) is slack for all t' € [T, T).

Proof of Lemma 7. To see this, recall that using Proposition 4 to define U(T) and U (¢'), (lgg )
can be written as

// 8F(v|t)d dt By (o] 1 // 8F(v|t)

T r(t) T o)

+ /(v—r(t/))f(vlt’)dv >0, (B.19)
r(t)

for all 7 € [t, T). The left hand side can be rewritten as

f/ 3F(v|’)d di _f(v_r@)f(vmdw/(v—r(ﬂ)f(vlﬂdv

i or@) r(f)

or
aF( B 0
// 0 odr f(v—r@)(f(vm f(vlﬂ)dv—/(v—r(t))f(vlT)dv
tr@ r(f)

Integrating the second term by parts, this becomes

r(f)
// 8””'”(1 dt—i—/[F(vIT) F(vlt)]dv—/(v—r(f)>f(”|T)d”
P or() 0]

or

r(f)

T v
_// 3Fa(tv|t) // 8F(v|t)d 5 /(v—r(ﬂ)f(vmdwo

tr@ 0

where the first two terms on the right are positive since r(t) < r(f) for all ¢ € (7, T], and the third
term is strictly positive since the integrand is non-positive, so the constraint, equation (B.19), is
slack forallf e [r, T). O
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Proof of Proposition 6. We further relax the firm’s problem, (P*), by assuming that the con-
straint does not bind for all 7 € [t, T], so U(t) = 0 by Proposition 4. We solve the relaxed
problem and show that the constraint binds for all ¢ € [0, 0] C [0, ] for some ¢ < t. We then
characterize the optimal function r(¢) on the three intervals, [0, o], [o, ], and [z, T], as well
as the optimal t, and prove that 0 < v < T. Finally, we verify that relaxing the constraint was
without loss of generality, that is, we verify that »(¢) is decreasing on [z, T'), which by Lemma 7
implies the constraint does not bind.

It is useful to divide the support [0, T'] into two intervals and give r(¢) a different name, rq
and rp, on [0, 7] and on [z, T'] respectively.

So using Proposition 4, U (t) = 0 for ¢ € [0, 7] and the firm’s problem can be written as

T D T o
max //f(v,t)(v—c)dvdt+//f(v,t)¢(v,t)dvdt (B.20)
{rel0,T]r1(2),r2(1)}
0 r@ T ra(t)

subject to

fol dF (vlt) , p , , ,
—// ” dvdt > Er[v]—ri () — /(v—rl(t))f(vlt)dv,Vt €[0,1),

T r(t) rit’)

where

1—H(t) oF (v|t) /ot

h@)  fl)
Note that relaxing the constraint is without loss of generality by Lemma 7 as long as the uncon-
strained solution satisfies the condition that ;' (¢) is decreasing.

Given any t and r,, unconstrained maximization implies that 71 () = ¢. We now show that
there exists a cutoff o € [0, ] such that the constraint binds if and only if # € [0, o ]. This cutoff,
o*(t, ry), is defined by

T v p
_/ / 8F(tv|t)dvdl‘=ET[U]_/(v_C)f(v|o—*(f’r2))dv_c’

¢, t)=v—c+

d

T r(t)

when a solution exists in the interval [0, 7], and defined by o*(t, r2) = 0 when

T v p
_// 8F(tv|f)dvdt>ET[U]_/(v—c)f(v|0)dv—c,

d

T (1)

and o *(t, ) = 7 when

fol dF (vlt) p
—f / o dvdt<Er[v]—/(v—c)f(v|r)dv—c.
T ra(r) ¢

Clearly o*(z, r2) is unique, given 7 and r, since Assumption 6 (Forward FOSD) implies that
fcv(v —ofwlt)ydv=v—c— fcv F (v|t)dv is strictly increasing in ¢. It follows that for all
t € (6*(t,r2), 1), (IC}) does not bind and that ri () = ri(t; 0*(t, r2)) = c. Moreover, for all

X0
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t <o*(z,r), (LQg) binds and r|(¢) =r{ (¢; 0*(t, r2)) is uniquely defined by

Erfv] - / (W —rit; 0™ (t. 1)) f W) dv —r{(t; 0™ (z.12))

ri(t;0*(t,r2))
—Er[v] - / (v — ) f(Wlo*(z, ra))dv — c,
C

. 7 . . . ..
since fx (v —x) f(x|t) + x is strictly increasing in x.
Using the implicit function theorem and the definition of o*(z, r;), we have
do*(t,r +€2)
de

e=0
-1 5
/( 3f(vl<7 (7, rz)) /8F(V2(t)|t)z(t)dl‘,
at at
and
80*(1 r2) /( 8f(v|o*(t rz)) / 8F(v|r)d =0,
ot ot
r2(7)

(B.21)

(B.22)

(B.23)

for all T and rp such that o*(z,r;) € (0, t). When o*(t,rn) = 0, then both derivatives are
zero (i.e., do*(t,r2)/dt =0 and do*(t,r2 + €2)/0€|.—y = 0). And when o*(t, r2) = 7, then

do*(t,r)/dt =1and do*(r,r2 +€2)/0¢€|.—¢ =0.

Using the implicit function theorem and the definition of r{'(¢; 0*(z, 7)) in (B.21) we have

arf(t; o) _ ff(v — c)%dv
do F(ri(t;o)|t)

which is clearly positive, and

v ad t
8r;"(z; O') _ fr?‘(t;a)(v - rik(t; G)) fc()ll}l )dv
ar F(r{(t;0)|t)

which is clearly negative, so r]*(t) is strictly decreasing on [0, o], and r;“(t) =c on [o, 7], SO

r{(t) is weakly decreasing on [0, T].

Substituting rf‘(t; 0 *(t, ry)) into the objective function, the firm’s problem can be written as

the following unconstrained calculus of variations problem:

a*(t,r2)

/ / f,t)(v —c)dvdt + / /f(v,t)(v—c)dvdt
{r rz(l)}

ri(t;0%(z,r2)) o*(t.ry) ¢

T v
+//f(v,t)¢>(v,t)dvdt.

T ra(t)

(B.24)
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Using the fact that r{(0*(t, r2); 0*(z, r2)) = c, the first-order conditions are

o*(t,r)
- / fai@ o (@), i@ 0% (T, ) -0
0
orf(t'; o*(z, *(t,
y ri(t 0*(r,r2)) 90*(t,r +€2) o
do de =0

T
- / f(r2(0), D (r2(2), Nz(1)dt = 0, Vz (1),

and
T Or(t's 6™ (1. 12)) Ba* (z, r2)
r , O ‘E,r ,
- / FOEW o (1), ) 0% (2. r)) — ) 2050 LT gy
0o 0T
0

v v
+/(v—c)f(v,r)dv— o, 1) f(v,T)dv=0.
¢ ra(7)

Note that the first first-order condition implies that if o*(z, r2) =0, the T =0, so r(t) = ¢ and
there is no distortion, and the firm extracts all of the surplus, which contradicts Assumption 7.
So o*(t, rp) > 0 by Assumption 7.

The first-order conditions imply that 0 < 7* < T. To see this, first notice that 7* = 0 implies
that o* (7, rp) = 0, which we just showed implies T = T which is a contradiction. Second, notice
that t* = T implies rp(t) = ¢ and 1 — H(t) = 0, so the 2nd and 3rd terms in second condition are
zero and hence the second first-order condition is strictly negative, unless o*(z, r2) = 0, which
again is impossible under Assumption 7, so clearly 0 < t* < T'.

So using (B.22) and (B.23) the first-order conditions can be written as:

T T
W(T,rz)/ww)df—/f(rz(t),t)¢(r2(t),t)z(t)dt=0, vz(1),

and

\Il(t,rz)/ 8F;l:|r)dv+/(v—c)f(v,t)dv— / é(,7) f(v, T)dv =0,

r2(7) r2(7)
where

o*(t,r) o ’ kgl %k —
V(T rp) = / fai@s 0 (T, ), Y 0%(T,2)) —©)

— - dt' > 0.
F(ri';o*(r,r2)It")

0
Substituting for ¢ (v, t), we can rewrite the first first-order-condition as

1 —H(t) —V(r,r2) dF (ra(t)|t)/0t
h(t) S r2@0)]t)

T
—/f(rz(t),t) [rz(t) —c+ ]z(t)dt:O,Vz(t),
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which, using f(v,t) = f(v|t)h(t), becomes simply ®(r»(¢),t; 7,r2) =0 forall ¢ € [t, T] where
oF (v|t) /ot
S, ;) =v—c+1A—-H@)—V¥(r,rp) ———. (B.25)
f, 1)
Substituting for ¢ (v, ), and using f(v,t) = f(v|t)h(t), we can rewrite the second first-
order-condition as

FOF (D) ; IF(v|7) ;
\D(r,rz)/ ” dv = /(I—H(r)) o7 dv + /(v—c)f(v,r)dv,

r2(7) r2(7) r2(7)

or

1 — H(t) — W(t, 1) = — /aF;’t"t)dU /(v—c)f(v,r)dv,

r2(7) r2(t)

and since fé(r)(v —co)f(w,t)dv <0 and d0F (v|r)/dt < 0, it follows that 1 — H(t) —
W(t,rp) < 0. Also, note that 1 — H(t) — W¥(t,r) <0 implies 1 — H(¢) — ¥ (r,r) < 0 for
all t+ > 7. Using (B.25), clearly, 1 — H(t) — W (7, r2) <0 combined with ®(r2(1), 7;7,12) =
implies that rJ(7) < c.

We now prove that dr(t)/dt < 0. The equation defining r3(¢) is ®(r2(t),1;7,72) =0, so
using the implicit function theorem,

dr@) _ @1, 17,1)
dt ®y(ra(t), 1: T, 12)

and using f(v,t) = f(v|t)h(¢) to cancel the A(¢) in the second term,

(B.26)

o[ ] OF (ra(0)11)/01
O (r2(0), 157, r) =1 — H(@) — V(7,12)) B vE— R
v=ra (1)
and
[
Oy(ra(1),t;1,2) =14+ (1 — H(t) — ¥(z,12)) ™

v=r7(t)
Under Assumption 9, the denominator in (B.26) is positive. Under Assumption 8, the first term in
the numerator of (B.26) is positive, and under Assumption 6 (FOSD) the second term is positive,
so the numerator of (B.26) is positive, and it follows that dr;(¢)/dt < 0, and more generally that
r(t) is decreasing on [0, T'], so from Lemma 7, it follows that relaxing the incentive constraint
was without loss of generality.

Finally, it must be true that r;(7) = c. We prove this by contradiction. Suppose instead that
r2(t) < c¢. Then there exists an €, and a new mechanism p(t), 7;(¢) and 7,(¢), which satisfies
r@) =ri(®),Vt €[0,7), () =ry(@),Vt € [t +€,T], and () =c¢,Vr € [t,T + €), which
earns strictly higher profits. The price of the new mechanism, p(1), is chosen so that U is con-
tinuous, and so that U (t +€) =U(t + ¢€), but also so that U increases more slowly and over a
longer interval than U. Specifically, there exists a v < t, such that we define U (v) =0 and
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v

0’(;):-/ aFg:”)dv (B.27)

c

forall r € [v, T 4+ €], while U(¢t) =0 for t € [v, t] and

Ui [ 2FOID
(t)=-— Y dv, (B.28)

ri(r)

so U'(1) < U'(t) for t € [z, T + €]. This implies that incentive compatibility is unchanged. Con-
sumer surplus increases by

T+e

/ (0(t) — U(t)) h(t)dt, (B.29)
but total surplus increases by

T+e ¢

/ / (c—v)f(v,t)dvdt. (B.30)

T (1)

Since v — 7, and U () —U(t) — 0, as € — 0, for € sufficiently small, producer surplus, or
profit, must be increasing. 0O

Proof of Proposition 7. Since the cutoff points {r(f):0<¢ <T} are optimal for (P*),
which in turn is more relaxed than the original screening problem, it suffices to check that
{(p(@),r(t)):0<t < T} satisty the constraints of the original problem.

Since U (t) > 0 for all # (see Proposition 6) the individual rationality constraints (IR) are satis-
fied. The feasibility constraints (F) are readily satisfied. Moreover, from Lemma 2, the incentive
compatibility constraint (It?,) of (P*) and the incentive compatibility constraint (IC,) of the orig-
inal problem are equivalent and hence the constraint (IC;) of the original problem is satisfied by
the payment and allocation scheme given by

0 if v<r(),

p([)—r([) if U<r(t)7 and y(v’[)z{l if v>r(t)

p @) if v>r(),

The incentive compatibility constraints (IC;) regarding downward deviations were ignored
for all types but the highest type 7 in (P*). We next show that the menu of contracts
{(p(t),r (1)) :0<t < T}satisfy (IC) of the original screening problem. For ¢ > t’, U (t’; t) >0
only if E; [v] > r (¢), in which case

x(v,t):{

U (1) =E o] + U (1) - / (v—r () £ (vl dv—r ().
r(t")
and we have

v v

8U(t ;t) _ dE; [v] =/vaf(v|t)dv= _/ 8F(v|t)dv - _/ 8F(v|t)dv S U ().
at dt at at ot

v v r(t)
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IfU (¢/';T) < U (T), then
T T
, I (1 5) ,
U(t;T)—/a—dst(T)—/U (s)ds,
S
t t
and U (';1) <U (1) forall t > ¢/, so (IC)) is satisfied.

Finally, we show that the incentive compatibility constraints (ICy) regarding upward devia-
tions, which were ignored in problems (P3) and (P4), are satisfied. For ¢’ > 1,

U (1) = / (v—r () f @l dv— p () +r ().
r(t)

‘We can rewrite this as

U(t'st)= / (v=r() fndv+U () - / (v =r () f () dv,

V(f’_) r(t')
- / (v—r (") [f @lD) — £ ()] dv+ U (7).
rt’)
So
WD) _ oy - (1) / [f vl — £ (v1)]dv+ / (w—r () LI 4,
a EYY
) r(t')
=) = @) [-F O+ F @)+ [ L),
r(’)

<0,

since 7’ (t’) <0and U’ (t/) < — ff(t,) %dv, and since Assumption 6 holds. Integrating, we

get U (';1) <U (1) forall ¢’ > ¢ since U (13 1) = U (1), which shows that (ICy) is satisfied.
Hence, {(p (t),r (t)) : 0 <t < T} is optimal for (P"). O

Proof of Corollary 1. For all 7,

U@) = / vf idv—p @) A= F @@ 0)+(p @) —r@)F@@)]). (B.31)
r()
Solving for p () in (B.31) we get for all 7,
pO)=Eviv=r®Ol+rOFF@)|)—-U@) =E [max{v,r )} -U (). (B.32)

Since type T is indifferent between her contract and the contract offer all types ¢ € [0, o] and
U (t; T) =Er [v] — E; [max {v, c}] for t <o by Proposition 5, E; [max {v, r (#)}] is constant as
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a function of ¢ over the interval [0, o]. Moreover, U (t) = 0 for t < o and hence, p’ () =0 for
t <o.Sincer (t) =c with U (¢) =0 for [o, 7), from Assumption 6 (FOSD) we obtain

v

p )= %Ez [max {v, c}] = —/

c

oF (vt
@D 120 for 1 e o, 1),

For ¢ > 7, differentiating (B.32) and using Proposition 4 we get

d
pl (t) = E]Et [maX{U,r (t)}] - U/ (t) )

=/vaf;:mdv—i—r’(t)F(r(t)|t)+/ aFa(tvmdv+r(t) —aF(;t(t)m,
ro) ro)
=/vaf;:|t)dv+r’(t)F(r(t)|t)+r(t) —BF(V;) 1)

r(t)
_8F(r(t)|t)r(t)_/Bf(vlt)vdv
at Jt

r(t)
=r'(t)F(r()|r),
and hence p’ (1) <0 since r’' (1) <0 fort > 7.

Notice that the effective price p (t) —r (¢) F (r (¢) |t) is increasing for all ¢ since r’ (¢) < 0 for
almost every t and

o [P —rOF®ID]=p @)=r" O F ¢ @t)—r@)r' @) f@)l)
AF (r(t)|t)
—r (t) T

aF (r (1) 1)
ot '
Next, observe that p (T) > p (o). To see this, recall that highest type is indifferent be-

tween her contract and that of type o, thus, U (T) = Er [v] — p (o). From (B.32), U (T) =
Er [max {v, r (T)}] — p (T) and hence,

>—r@)r' @) fr@)|)—r)

p(T) — p (o) =Er [max{v,r (T)}] — Er [v] =0,

where the inequality is strict if 7 (T') > v. Finally, if r () < c, then there is a downward jump
in prices at 7, i.e. p(t) < p(t—). To see this note that, U (t) =0 for r < t and r (r) < ¢ for
o <t < t whereas r (t) < ¢, and hence p (7) < p (r—) since by assumption af (v|t) /ot is
continuous in v and . O

Appendix C. Proof of Proposition 8

The proof consists of a series of claims.
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Claim 1 (Weak duality). The minimized value of (Pp) is less than or equal to the minimized value
of (Pp), or d* < b*.

Proof. Consider any y that is feasible for (Pp) (that is, satisfies y € N and G;(3) <0 fori =
1,2) and any A > 0. Then clearly

L3, ») =Go(),

from which is follows that
g) = inf L(y,2) <L(3,4) < Go(P).
yeN
Taking the supremum of g(1) over A > 0, and infimum of G (y) over y € N gives the result. O
Our second claim uses Assumption 11 and the following theorem:

Theorem 1. (See Rockafellar, 1970, Theorem 11.3.) Let C1 and Cy be two convex sets. In order
that there exists a hyperplane separating C1 and C, properly, it is necessary and sufficient that
the relative interior of C| and the relative interior of Co have no point in common.

Note that we apply this theorem using just the interior of C; and C» and not the relative
interior (since the sets have the same dimensionality as the space in which they are contained).

Claim 2 (Strong duality). The problem (Pp) and its dual (Pp) attain the same optimum, or
b* =d*.

Proof. Define
={G1(). G2, Goy) e Ry e},
and define the closely related set A C R3:
- [(ul,uz,t) € R3|3y € A such that G;(y) <u;, fori = 1,2, and Go < r].

The set A can be viewed as the epigraph form of S, since A includes all points in S and points
that are worse, i.e., those with higher objective values or higher inequality constraint function
values.

Note that b* = inf{¢|(0, 0, t) € A}. Also note that A is a convex set because G;(y) for i =
0, 1, 2 are linear functionals, so if (u1, u2, t) and (i1, ii2, f) are both in A, and if y and y are the
associated values from the definition of A, then forall « € (0, 1), (11, ti2, f) = a(uy, u2, 1)+ (1 —
a)(it1, iz, ) is in A, because G;(ay + (1 — a)¥) <i; fori =1,2, and Go(ay + (1 —a)y) <f.

Define another set B = {(0 0,s) € R3 ls < b*} and note that B is convex and that AN B =,
so that we can apply the separating hyperplane theorem (Theorem 11.3 in Rockafellar, 1970).
This theorem implies that there exists (A1, A2, w) # 0 and B such that

(Ui, uz,1) € A= hui + raus + put > B, (C.1)
and

(u1,u2,t) € B = Auy + Aoty + it < B. (C2)
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Equation (C.1) implies (5»1 >0, 5»2 > 0, and p > 0 since otherwise the values of 5»1 Ui +)~L2u2 + ut
are unbounded below, so no f exists satisfying (C.1). Equation (C.2) implies simply that ut < g
for all r < b*, hence ub™ < «. So equations (C.1) and (C.2) together imply that

MG1(y) +12G2(y) + nGo(y) = p = pub*. (C3)

Next we rule out u = 0 by contradiction. Using (C.3), u = 0 implies that for any y € N,
AMG1(y) + A2G2(y) = 0, but this contradicts Assumption 11, which states that there exists y
such that G;(y) <0 fori =1, 2.
Therefore i > 0, and dividing (C.3) by p gives
L(y,%/w) = b*.Vy e N, (C4)

from which is follows that
g(/p) = inf L(y,%/p) > b*.
yeN

or g(A*) > b* where A* = 1/u. And since we have already shown in Claim 1 that g(A*) < b*, it
follows that g(1*) = b*, and strong duality holds. O

Claim 3. Claim 2 (Strong duality) implies that there exists 1* € R? such that

2
d* = yigj{[ {Go(y) + Z,\;‘Gi(y)} = sup g(A) subject to A; >0, fori=1,2. (C.5)
A

i=1
Claim 4. Claim 2 implies that there exists A* > 0 such that y* is optimal for (Pp) if and only if
v* minimizes L(y, \*) and 21‘2=1 Au;Gi(y) =0.

Proof. If y* is optimal for (Pp), then from Claims 2 and 3

2
b =d* = L0*, y") = Go(y") + )_AGi(y") < Go(y*) =d*
i=1

which implies that y* minimizes L(y, A*) and Ziz=1 riGi(y)=0.

Conversely, if y* minimizes L(y, A*) and Ziz=1 AiG;i(y) =0, then Claims 2 and 3 imply
b* =d* = L(y*,2*) = Go(y¥)

which implies that y* is optimal for (Pp). So both Claim 4 and the proposition are proved. O
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