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Abstract 
 
The transcriptional state of a cell reflects a variety of biological factors, from cell-type specific features to 
transient processes such as cell cycle, all of which may be of interest. However, identifying such aspects from 
noisy single-cell RNA-seq data remains challenging. We developed pathway and gene set overdispersion 
analysis (PAGODA) to resolve multiple, potentially overlapping aspects of transcriptional heterogeneity by 
testing gene sets for coordinated variability amongst measured cells. 
 
 
 
  



 
Single-cell transcriptome measurements1,2 provide an unbiased approach for studying the complex cellular 
compositions of healthy and diseased tissues3-9. High levels of technical noise10 and a strong dependency on 
expression magnitude pose difficulties for principal component analysis (PCA) and other dimensionality 
reduction approaches such as GP-LVM11 or tSNE12. Even when cell-to-cell differences expose prominent 
biological processes taking place within the measured cells, such as cell cycle or metabolic state variation, 
these processes may not be of primary interest6. Such cross-cutting transcriptional features represent 
alternative ways to classify cells, and pose a challenge for the commonly-used clustering approaches that aim 
to reconstruct a single subpopulation structure4-6,13. Partitioning methods, such as k-means clustering or the 
specialized BackSPIN algorithm5 may, for example, classify cells first based on cell cycle phase instead of 
tissue-specific signaling state, if the cell cycle differences are more pronounced. 
 
Here, we describe PAGODA, an alternative approach for analyzing transcriptional heterogeneity that aims to 
detect all statistically significant ways in which measured cells can be classified. PAGODA evaluates 
coordinated expression variability of genes within both annotated pathways and automatically detected gene 
sets. Gene set testing with methods such as GSEA14 has been widely used for differential expression analysis 
to increase statistical power and uncover likely functional interpretations. A similar rationale can be applied in 
the context of heterogeneity analysis. For example, while cell-to-cell variability in the expression of a single 
neuronal differentiation marker such as Neurod1 may be too noisy and inconclusive, coordinated upregulation 
of many genes associated with neuronal differentiation in the same subset of cells would provide a prominent 
signature distinguishing a subpopulation of differentiating neurons. We illustrate that in published data sets, 
PAGODA recovers new and known subpopulations, suggesting their likely functional roles.  
 
Transcriptional diversity in mouse neural progenitor cells (NPCs) is likely to depend on a variety of intrinsic and 
external factors that include programmed cell death15, genomic mosaicism16,17 and exposure to signaling 
lipids18. Using scRNA-seq to assess a cohort of cortical NPCs from an embryonic mouse, we demonstrate that 
PAGODA recovers the known neuroanatomical and functional organization of NPCs. Our approach identifies 
multiple aspects of transcriptional heterogeneity within the developing mouse cortex that are difficult to discern 
using existing heterogeneity analysis approaches. 
 
To characterize significant aspects of transcriptional heterogeneity, PAGODA uses a series of steps (Fig. 1 
and Online Methods). First, the effective sequencing depth, drop-out rate and amplification noise of each cell 
are estimated using a previously described mixture model approach19 with minor enhancements (Step 1, Fig. 
1). Using these models, the observed expression variance of each gene is renormalized based on the 
genome-wide variance expectation at the appropriate expression magnitude (Step 2). Batch correction is also 
performed at this stage. The resulting residual variance, modeled by the χ 2  statistic, effectively distinguishes 
subpopulation-specific genes (Supplementary Notes 1 and 2), and determines the contribution of each gene to 
subsequent PCA calculations.  
 
PAGODA then examines an extensive panel of gene sets to identify those showing a statistically significant 
excess of coordinated variability (Step 3). The gene sets include annotated pathways, such as Gene Ontology 
(GO) categories, as well as clusters of transcriptionally-correlated genes found within a given dataset (de novo 
gene sets). The prevalent transcriptional signature of each gene set is captured by its first principal component 
(PC), using weighted PCA to adjust for technical noise contributions. If the amount of variance explained by the 
first PC of a given gene set is significantly higher than expected (Step 4, correcting for multiple hypotheses), 
the gene set is said to be overdispersed, and is included in the subsequent analysis. 
 
Many PCs will separate cells in a similar way, either because the same genes drive them, or because multiple 
biological processes distinguish the same subsets of cells. To provide a non-redundant view of transcriptional 
heterogeneity, PCs from significantly overdispersed gene sets are clustered, and those with similar gene 
loadings or cell separation patterns are combined to form a single 'aspect' of heterogeneity (Step 5, 
Supplementary Fig. 1). Major aspects of transcriptional heterogeneity can be explored numerically or through 
an interactive web browser interface (Step 6). As we illustrate below, examining individual aspects and their 
relationships can provide insights and functional clues not apparent from the most prominent cell classification. 
Finally, if one or more aspects of transcriptional heterogeneity are determined to be extraneous to the 
biological context, there is an option to control for them explicitly (Step 7). 



  
To illustrate PAGODA on a complex cell population, we re-examined scRNA-seq data for 3,005 cells from the 
mouse cortex and hippocampus5. This extensive dataset covers a variety of cell types, some of which exhibit 
very distinct expression signatures. Applying PAGODA revealed nine major aspects of heterogeneity that 
distinguish the seven top-level classes and two lower-level subpopulations originally identified by BackSPIN5, a 
recursive partitioning method (Fig. 2). The functional interpretation of the identified aspects is evident from the 
identity of the overdispersed GO categories. The most significant aspect separates oligodendrocytes, which 
are easily distinguished by strong overdispersion of myelination-related pathways. Similarly, overdispersion of 
immune, vascular and muscle-associated GO-annotated gene sets identify microglia, vascular endothelial and 
mural subpopulations respectively. Other cell types, such as ependymal cells or different types of neurons, are 
distinguished by de novo gene set signatures, with most overdispersed genes revealing their identity (e.g. 
Gad1, Tbr1, Gabra5).  
 
Aspects distinguishing many of the cell types appear to overlap, most frequently with the myelination signature. 
For instance, a subset of 35 cells exhibits prominent expression of both immune response genes characteristic 
of microglia as well as genes responsible for myelin sheath (Fig. 2 and 
http://pklab.med.harvard.edu/scde/pagoda.links.html for all interactive PAGODA results). Similarly, a myelin-
associated expression signature is observed for a subset of vascular cells, astrocytes, pyramidal neurons and 
interneurons. These hybrid signatures most likely correspond to cases in which two different cells were 
captured together (see Supplementary Fig. 2 for co-occurrence frequencies). BackSPIN and other partitioning 
methods would need to classify such cells based on a single signature or to isolate them as a separate class 
without exposing their relationship to other groups. In contrast, PAGODA can expose multiple alternative 
classifications of a given cell. 
 
We further evaluated PAGODA performance by re-analyzing datasets that were used to present alternative 
methods of heterogeneity analysis4,6,20, recovering previously identified subpopulations and identifying 
additional biologically relevant features (Supplementary Note 3). In particular, PAGODA’s ability to associate a 
given cell with multiple, potentially independent aspects of transcriptional heterogeneity allows one to focus on 
biologically relevant subpopulations that are distinguished by subtle transcriptional variation. For instance, in 
reanalyzing data for mouse CD4+ T that was used to present an elegant GP-LVM approach6, PAGODA 
successfully recovered Il4ra-Il24 response and a closely aligned glycolysis aspect in addition to a prominent 
mitosis-associated signature, without requiring explicit correction steps. Furthermore, PAGODA revealed a 
prominent subpopulation of cells exhibiting an expression signature typical of dendritic cells that was not 
previously observed. 
 
As heterogeneity amongst NPCs may influence downstream neural diversity, we performed Smart-Seq24 on 65 
NPCs isolated from the cerebral cortex of 13.5-day embryonic mouse brain (Online Methods). The most 
significant aspect of heterogeneity identified by PAGODA reflects gradual induction of the genes associated 
with neuronal maturation and growth (Fig. 3a, top aspect). Approximately half of the cells express Dcx, Sox11, 
and other known markers of neuronal maturation, with the most mature subset expressing genes involved in 
neuronal maturation and growth cones (Neurod6, Gap43). Such cells maintain expression of some progenitor 
markers (e.g., vimentin) and therefore likely represent developing, committed neurons. In contrast, the set of 
early NPCs exhibits strong M- and S-phase signatures that are absent from the more mature NPCs, as well as 
up-regulation of genes characteristic of early progenitor state21 (Sox2, Notch2, Hes1) captured by the “negative 
regulation of neuronal differentiation” and “neural tube development” GO categories.  
 
Maturation of neuronal progenitors is closely tied to the spatial organization of the developing cortex22. We 
used spatial expression patterns23 of genes differentially expressed between the early and maturing NPCs to 
reconstruct the most likely spatial distribution of these cells within the mouse brain (Fig. 3b, Online Methods). 
As expected, we found early NPCs localize close to ventricular zone (VZ). We also used in situ RNA-FISH 
(Online Methods) to examine two genes, Rpa1 and Nnd, of unknown relationship to the embryonic cerebral 
cortex (Fig. 3c). Consistent with their predicted pattern, Rpa1 was most prominent in proliferative regions. Ndn 
localized in the post-mitotic regions (especially the cortical plate), as well as rare cells within the subventricular 
zone (SVZ, Supplementary Fig. 3).  
 



An additional subset of NPCs was distinguished by expression of Eomes, Neurod1, and other genes localized 
to the SVZ region and thought to distinguish basal progenitors21,24. The Eomes signature marks cells with 
intermediate levels of genes associated with neuronal maturation, as well as a subset of early NPCs 
undergoing DNA replication, likely representing neuronally-committed NPCs maturing in the SVZ, and dividing 
basal NPCs, respectively. These dividing cells express notch signaling genes (Dll1, Notch2, Mfng) concurrently 
with Eomes and therefore likely represent nascent basal progenitors21. 
 
Two other aspects cut across the main NPC maturation axis. The first is driven by prominent expression of 
Ndn (Fig. 3a). Ndn, initially noted for high expression in mature neurons25, has also been shown to be 
expressed in the VZ26, and to restrict both proliferation and apoptosis rates in NPCs26,27. In combination with 
RNAscope analyses (Supplementary Fig. 3), we found Ndn to be expressed within a subset of NPCs, 
approximately a quarter of which exhibit pronounced mitotic signatures and are likely localized in the SVZ. The 
second cross-cutting aspect is coordinated expression of Dlx homeodomain transcription factors. Dlx genes 
mark tangentially-migrating NPCs, which originate in the ganglionic eminence (GE) and migrate to the cortical 
areas, giving rise to the GABAergic neurons28,29. The Dlx-positive cells express other markers of tangentially 
migrating NPCs, most notably Sp9 and Sp8 transcription factors30. Indeed, spatial localization of these cells 
was predicted to be in the GE region, where tangentially-migrating NPCs are expected to originate (Fig. 3b). In 
agreement with earlier observations of such NPCs undergoing mitosis in the cortical VZ/SVZ areas, two of ten 
Dlx-positive NPCs were captured in S-phase and one in M-phase. 
 
To illustrate the methodological advantage of PAGODA, we re-examined our NPC data using alternative 
analysis methods, including PCA, ICA, tSNE7,12, GP-LVM11, and BackSPIN5 (Supplementary Figs. 4 and 5). 
While none of the methods were able to recover all of the identified subpopulations, BackSPIN provided the 
most compelling results, capturing heterogeneity involving expression of Dlx and Prdx4/Mest. However, the 
reported clustering grouped only some of the cells associated with each signature, illustrating limitations of 
partitioning-based interpretation in a complex biological context. 
 
Just like whole organisms, individual cells can be classified according to a variety of meaningful criteria. For 
example, tangentially migrating NPCs, despite being a distinct progenitor subtype, go through the same 
neuronal maturation process as other NPCs. By identifying significantly overdispersed gene sets, PAGODA is 
able to effectively recover such complex heterogeneity structures. The potential ambiguity of classification 
illustrated by the NPCs is likely to be present in many biological contexts. In such cases, an optimal partition or 
clustering of cells is unlikely to be fully informative, and the analysis can benefit from concurrent interpretation. 
The gene-set-based approach and interactive interface implemented by PAGODA aims to identify and facilitate 
interpretation of significant transcriptional features separating cells within the population. 
 

Figure legends 
Figure 1. Overview of PAGODA. Transcriptional heterogeneity is analyzed in seven steps: 1. Error models 
are fit for each cell to quantify the dependency of amplification noise and drop-out probabilities on the 
expression magnitude19. A model fit for a cell is shown, separating drop-out and amplified components, and the 
95% confidence envelope of the amplified component; 2. The residual expression variance for each gene is 
determined relative to the transcriptome-wide expectation model (red curve), taking into account the 
uncertainty in the variance estimates of each gene by determining effective degrees of freedom ( kg ) for the 

χ 2  distribution; 3. Weighted PCA analysis is performed independently on functionally-annotated gene sets, as 
well as de novo gene sets determined based on correlated expression in the current dataset; 4. Cell PC scores 
(orange-green gradient) of overdispersed gene sets (those with significantly higher than expected variance 
explained by the PC) are identified as significant aspects of heterogeneity; 5. Redundant aspects that are 
driven by the same genes or show similar patterns of cell separation are grouped to provide a succinct 
overview of heterogeneity; 6. A web interface is used to navigate the identified aspects of heterogeneity, 
associated gene sets and gene expression patterns. 7. Some aspects of heterogeneity may be deemed 
artifactual or extraneous based on the biological question, and can be controlled for in a subsequent iteration. 
 
Figure 2. PAGODA analysis of data from 3,005 mouse cortical and hippocampal cells5. The dendrogram 
shows the overall clustering of the cells, and the row immediately below specifies the group to which each cell 



was assigned in the original analysis5. The main panel shows the top 9 significant aspects (P < 0.05) of 
heterogeneity (rows) detected by PAGODA based on gene sets defined by GO annotations. The aspect scores 
(Cell PC score) are oriented so that high (orange) and low (green) values generally correspond to increased 
and decreased expression of associated gene sets, respectively. Row labels summarize key functional 
annotations of gene sets in each aspect. Two lower panels show expression patterns of top-loading genes for 
innate immune response (from the aspect distinguishing neuroglia), and myelin sheath (distinguishing 
oligodendrocytes). A population of ~35 cells expressing both signatures is marked by a green bar, and most 
likely represents capture of two associated cells of different type. The bottom panel shows images of the 
microfluidic traps corresponding to some of the dual-signature cells, along with cells (leftmost two) exhibiting 
only the oligodendrocyte signature. Green numbered boxes below the main panel highlight cells showing a 
combination of oligodendrocyte and other cell type signatures (numbered 1-5: vascular endothelial, astrocytes, 
CA1 neurons, Gad1/2 interneurons and neuroglia).  
 
Figure 3. Transcriptional heterogeneity of 65 neuronal progenitor cells in embryonic mouse cortex.  
a. Top eight significant (P < 0.01) aspects of heterogeneity are shown, labeled by their primary GO category or 
driving genes. The top aspect tracks induction of neuronal maturation pathways, driving the overall 
subpopulation structure. Mitotic and S-phase signatures in early NPCs account for the next two most 
significant aspects, with the S-phase aspect incorporating closely matching expression patterns of genes 
responsible for NPC maintenance. Color codes in the top panel summarize key subpopulations of NPCs 
distinguished by the detected heterogeneity aspects. 
 
b. Location of early vs. maturing NPC classes within embryonic brain. In situ hybridizations in E13.5 mouse 
brain are shown for Tyro3 and Nfasc, with the two heatmap rows above showing scRNA-seq expression. 
Computational prediction (third panel) based on the overall transcriptional profile places early NPCs near VZ, 
and maturing ones in SVZ (subventricular zone)/CP regions. In situ images were generated by Allen Institute 
for Brain Science23. The lower panel shows anatomical placement of the Dlx-expressing NPCs, and in situ 
images for the associated genes. 
 
c. Validation of genes associated with specific subpopulations by in situ hybridization. Coronal E13.5 brain 
sections labeled using RNAscope probes for Rpa1 (left) and Ndn (right). Rpa1 showed high expression in the 
ventricular (VZ) and sub-ventricular zone (SVZ). Ndn, which is marks a distinct subpopulation of both mature 
and early NPCs, shows prominent expression throughout the CP, with rarer high expressing cells in the VZ 
and SVZ (black arrows). 
 

Methods 
Isolation and single-cell RNA-seq of mouse neural progenitor cells (NPC) and astrocytes (ASC)s 
Single NPCs were isolated from C57BL/6J embryonic day 13.5 cortices for RNA-sequencing. Timed-pregnant 
mice were sacrificed by deep anesthesia followed by cervical dislocation. The embryos were quickly removed 
and cortical hemispheres were isolated, ganglionic eminences removed, and all pups brains were pooled. All 
animal protocols were approved by the Institutional Animal Care and Use Committee at The Scripps Research 
Institute (La Jolla, CA) and conform to the National Institutes of Health guidelines.  
 
Single cells were isolated by gentle trituration in ice-cold phosphate buffered saline containing 2 mM EGTA 
(PBSE) using P1000 tips with decreasing bore diameter. Cells were then filtered through a 40 uM nylon cell 
strainer and stained with propidium iodide (PI), a live-dead stain, and fluorescence activated single cell sorting 
(FACS) was performed selecting for PI negative cells. Samples remained on ice throughout the process and 
total processing time from cervical dislocation to sorting was limited to 2 hours. Single cells were sorted directly 
into cell lysis buffer provided in the Clontech SMARTer® Ultra™ Low RNA Kit for Illumina® Sequencing (cat # 
634936), and sequencing libraries were generated using the manufacturer’s protocol. Resulting libraries were 
sequenced on the Illumina® HiSeqTM 2000 sequencing platform. 
 
Gene validation using in situ hybridization with RNA-scope 
Mouse E13.5 embryos were removed from timed pregnant mice and prepared according to RNAscope 
instructions for paraffin embedded tissue. RNAscope probes (Advanced Cell Diagnostics) were designed by 
the manufacturer (Cat. # : GINS2 435891, RPA1 435911) and sections were processed using RNAscope 2.0 



High Definition Reagent Kit - BROWN (Cat. #:310035) according to the manufacturer’s instructions. Sections 
were imaged on a Ziess Axioimager at 20× magnification. 
 
Previously published single-cell RNA-seq data.  
For the mixture of cultured human neuronal progenitor cells (NPCs) and primary cortical samples from Pollen 
et al20, SRA files for each study were downloaded from the Sequence Read Archive 
(http://www.ncbi.nlm.nih.gov/sra) and converted to FASTQ format using the SRA toolkit (v2.3.5). FASTQ files 
were aligned to the human reference genome (hg19) using Tophat (v2.0.10) with Bowtie2 (v2.1.0) and 
Samtools (v0.1.19). Gene expression counts were quantified using HTSeq (v0.5.4). Read counts for the Th2 
data by Buettner et al6 were downloaded from the supplementary site 
(http://github.com/PMBio/scLVM/blob/master/data/Tcell/data_Tcells.Rdata). Read (or UMI) count matrices for 
other two datasets were downloaded from GEO: GSE60361 for Zeisel et al5; GSE59739 for Usoskin et al4.  
 
Fitting single-cell error models. Following the approach described in Kharchenko et al19, the read count for a 
gene g in a cell i was modeled as a mixture of a negative binomial (signal) and Poisson (drop-out) 
components: cg

i ~ pi
d (eg )Poisson λbg( )+ 1− pid (eg )( )NB αieg,θi (eg )( ) , where 

€ 

pi
d (eg ) is the probability of 

encountering a drop-out event in a cell i for a gene with population-wide expected expression magnitude 

€ 

eg  
(FPKM); 

€ 

λbg = 0.1 is the low-level signal rate for the dropped-out observations; 

€ 

θ i(eg )  is the negative binomial 
size parameter (see functional form below); and 

€ 

α i  is the library size of cell i, as inferred by the fitting 
procedure. The single-cell error models were fitted using the approach described in Kharchenko et al19, with 
the following modifications. 1. Rather than estimating expected expression magnitudes of genes using all 
pairwise comparisons between all other cells, each cell was compared to its k most similar cells (based on 
Pearson linear correlation of genes detected in both cells for any pair of cells). The value of k was chosen to 
approximate the complexity of the dataset (1/3rd of the cells for mouse and human NPC datasets, 1/5th for the 
larger Zeisel et al.5 and Usoskin et al.4 datasets). 2. The count dependency on the expected expression 
magnitude was estimated on the linear scale with zero intercept. 3. To improve fit, the drop-out probability was 
modeled using logistic regression on both expression magnitude (log scale) and its square value. 4. Instead of 
fitting a constant value for the negative binomial size parameter 

€ 

θ , it was fit as a function of expression 

magnitude, using the following functional form: log(θ ) = a+ (h− a) / 1+10(x−m)*s( )
r
, where x is the expression 

magnitude (log scale), and a,h,m,s,r are parameters of the fit. This functional form provides a more flexible fit 
than the 

€ 

θ = (a0 + a1 / x)
−1 form used in DESeq31, while allowing for stable asymptotic behavior. 

 
Evaluating overdispersion of individual genes.  
For each gene, the approach estimates the ratio of observed to expected expression variance and the 
statistical significance of the observed deviation from the expected value. To illustrate the rationale, we start 
with a Poisson approximation. Let 

€ 

cg
i  be the number of reads observed for a gene g in a cell i. If such reads 

follow a Poisson distribution with the mean 

€ 

µg  and variance 

€ 

vg  (both equal to some Poisson rate 

€ 

λg ), then 

Fisher’s index of dispersion Dg = cg
i −µg( )

2
/ vg

i=1

k

∑  follows 

€ 

χk−1
2  distribution32. While for the Poisson case 

€ 

vg = µg , for negative binomial process, 

€ 

vg = µg + (µg )
2 /θ , where 

€ 

θ  is the size parameter. As 

€ 

θ  decreases 

from very high values where the negative binomial is well approximated by a Poisson, 

€ 

Dg  diverges from 

€ 

χk−1
2 . 

Analytical adjustments of 

€ 

Dg  based on the negative binomial moments can improve 

€ 

χ2  approximation33. For 

more accurate approximation we used a numeric correction of the 

€ 

χ2  degrees of freedom, depending on the 
magnitude of 

€ 

θ , so that 

€ 

Dg ~ χf (θ )
2  (Supplementary Note 2, Figure SN2.2).  

 
To account for the possibility of drop-out events, weighted sample variance estimates were used, so that: 

Dg = wg
i cg

i −µg
i( )

2"
#$

%
&' / µg

i + (µg
i )2 /θi (eg )"# %&

cell i
∑ ~ χ kg

2 , where 

€ 

wg
i  is the probability that the measurement in a cell i 



was not a drop-out event based on the error model for cell i, and kg = wg
i f θi (eg )( )

i=1

k

∑  is the effective degrees of 

freedom for the gene g. 

€ 

µg
i = egα i , where 

€ 

eg  is the expected expression magnitude of a gene g across the 
measured cells.  
 
Since negative binomial (or NB/Poisson mixture) models do not fully capture the variability trends observed in 
the real scRNA-seq measurements, 

€ 

Dg  estimates for the real data can systematically deviate from 1. To adjust 

for this non-centrality, we normalized 

€ 

Dg  by its transcriptome-wide expectation value 

€ 

Dg
e, where 

€ 

Dg
e models 

the transcriptome-wide dependency of 

€ 

Dg  on gene expression magnitude. 

€ 

Dg
e estimates were obtained using 

a general additive model (GAM, fit using the mgcv R package) as a smooth function of gene expression 
magnitude 

€ 

eg . To improve smoothness, the GAM fit was performed on the corresponding squared coefficient 

of residual variance 

€ 

(Dg /eg )
2 . The fit is performed on all of the genes. The P value of overdispersion for a 

gene g was then be calculated as Pg
od = F

χkg
2 (kgDg /Dg

e ) , where 

€ 

F
χk
2  is CDF of 

€ 

χ2 distribution with k degrees of 

freedom.  
To improve stability of the estimates with respect to outliers, a Winsorization procedure34 was applied to the 
read count matrix prior to the variance evaluation described above. To ensure that the outliers are trimmed in a 
manner independent of the total cell coverage, the Winsorization procedure was applied to the FPM matrix (i.e. 
normalizing counts by the library size), that were then translated back into the integer counts. A trim value of 3 
was used for all datasets (i.e. observations from the three highest and tree lowest cells for each gene were 
Winsorized). 
 
Weighted PCA and significance of pathway overdispersion. For PCA the data was transformed to better 
approximate the standard normal distribution. Specifically, PCA was carried out on a matrix of log-transformed 
read counts with a pseudocount of 1, normalized by the library size: 

€ 

xg
i = log(cg

i /α i +1) . The values for each 
gene (matrix row) were then scaled so that the weighted variance of a given gene matched the tail probabilities 

of the distribution for a standard normal process: yg
i = xg

i QN (Pg
od ) / varwg (xg ) , where 

€ 

QN  is the quantile 

function of the standard normal distribution, and 

€ 

varwg
(xg )  is the weighted variance of values 

€ 

xg. As in our 
previous work19, the weight used for the clustering and PCA steps included an additional damping coefficient k 
= 0.9 : 

€ 

wg
i =1− k * pi

d (eg )p
bg (cg

i ) , which improved the stability of the subsequent cell clustering for noisy 

datasets ( pbg(cg
i )  is a probability of observing 

€ 

cg
i  counts in a drop-out event, evaluated from the Poisson PDF). 

 
Weighted PCA was performed for each gene set as described by S. Bailey35, recording first (and optionally 
subsequent) principal components, the magnitude of the eigenvalue (

€ 

λ1) and associated cell scores for each 
gene set. Statistical significance of the 

€ 

λ1 eigenvalues obtained for each gene set (overdispersion P value for a 
set s, 

€ 

Ps
od ) was evaluated based on the Tracy-Widom F1 distribution36 

€ 

F1(m,ne ), where m is the number of 
genes in a given set s, and ne is the effective number of cells, determined to fit the distribution of the randomly 
sampled gene sets (containing the same number of genes as the actual gene sets). The presented results 
used pathways annotated by Gene Ontology (GO), restricting evaluation to the GO terms that had between 
1000 and 10 annotated genes. 
 
Identification and statistical treatment of de novo gene clusters. Since some aspects of transcriptional 
heterogeneity can be driven by genes that are poorly represented or not at all described by the annotated 
pathways, PAGODA incorporates into the overall analysis de novo gene sets that group genes showing 
correlated patterns of expression across the cells measured in a particular dataset. By default, PAGODA, 
implements a straightforward clustering procedure: a hierarchical clustering is performed using Ward method 
(as implemented by the hclust package in R) using a Pearson correlation distance on the normalized 
expression matrix (that is used for the weighted PCA step described above). The resulting dendrogram is cut 
to obtain a pre-defined number of de novo gene clusters (the results shown use 150 clusters). As there are 



many alternative methods for clustering co-expressed genes, PAGODA implementation provides parameters 
to use alternative clustering procedures. 
 
Since de novo gene clusters are by purposefully selected to contain genes with correlated expression profiles, 
the amount of variance explained by the first principal component (magnitude of 

€ 

λ1) will be higher than 
expected from random matrices, and cannot be modeled by the same Trace-Window F1 distribution as 
previously-annotated gene set. To evaluate statistical significance of overdispersion, a background distribution 
of 

€ 

λ1 was generated by performing the same hierarchical clustering and weighted PCA procedure on 
randomized matrices (where cell order was randomized for each gene independently, 100 randomizations). 

The 

€ 

λ1 values were normalized relative to Tracy-Widom F1 expectation as λ1
s = λ1 − (aλ1

TW + bn)"# $% / v1
TW , 

where λ1
TW

 and v1
TW  are the mean and variance of 

€ 

λ1  predicted by the Tracy-Window F1 distribution, and 

coefficients a and b are determined by the linear model λ1 ~ λ1
TW + n . This standardized residual λ1

s  was 
modeled using Gumbel extreme value distribution, the parameters of which were fit using extRemes package 
in R. The overdispersion P value for each de novo gene set were determined from the tails of that distribution. 
The subsequent procedures treated de novo gene sets and annotated gene sets in the same way.  
 
Clustering of redundant heterogeneity patterns. To compile a non-redundant set of aspects, the PC cell 
scores (projections on the eigenvector) from each significantly overdispersed (5% FDR, as estimated by the 
Benjamini-Hochberg method37) gene set were normalized so that the magnitude of their variance corresponds 
to the tail probability of the 

€ 

χ2 distribution: 

€ 

var(si) =Q
χn−1
2 Pi

od( ) /(n −1) , where 

€ 

Q
χn
2  is the quantile function of 

the 

€ 

χ2  distribution with n degrees of freedom (n is the number of cells in the dataset). The redundant aspects 
of heterogeneity were reduced in two steps. First, aspects reflecting transcriptional variation of the same genes 
were grouped by evaluating similarity of the corresponding gene loading scores in combination with the pattern 

similarity using the following distance measure between gene sets i and j:

€ 

dij = 1− cor(li,l j ) *cor(si,s j )
# 
$ 
% & 

' 
( , 

where cor is Peason linear correlation, 

€ 

li,l j  are the loading scores of genes found in both i and j sets, and 

€ 

si,s j  
are the corresponding PC cell scores (

€ 

dij  was set to 1 if there were less than 2 genes in common between the 
gene sets i and j). The distance 

€ 

dij  was then used to cluster the aspects, using hierarchical clustering with 
complete-linkage. Clusters separated by a distance less than 0.1 were grouped. The cell scores of the grouped 
aspects were determined as cell scores of the first principal component of all aspects within a grouped cluster. 
The second step, aimed at grouping aspects showing similar patterns of cell separation, was accomplished by 
another round of hierarchical clustering using 

€ 

cor(si,s j )  distance measure with Ward clustering procedure. 
The similarity threshold for the final grouping of similar aspects varied between datasets depending on their 
complexity (0.5 for the human NPC data, 0.95 for the mouse cortical/hippocampal dataset, 0.9 for the T cell 
and the mouse NPC data).  
 
Batch correction. To control for the effect of categorical covariates, such as presence of multiple batches in 
the data, the approach contrasted whole-population and batch-specific variance estimates. Specifically, for 
each gene g, a batch-specific average expression magnitude was estimated for each batch b: 

€ 

eg,b . These 

batch-specific expression estimates were then used to obtain batch-adjusted values of 

€ 

Dg , 

€ 

wg
i  and 

€ 

kg  (

€ 

Dg,b , 

€ 

wg,b
i  and 

€ 

kg,b  respectively). To identify genes showing batch-specific variation, the ratio of batch-specific and 
batch-adjusted variance was evaluated as 

€ 

αg = Dg.b /Dg . The residual variance of genes showing discrepant 

batch- and population-specific variance was taken to be Dg
b =min(αg,1 /αg )*Dg,b /Dg

e , and 

Pg
od = F

χkg
2 (kgDg

b /Dg
e ) .  

 
The procedure above ensures that batch-specific effects are not reflected in the magnitude of the adjusted 
variance. Batch effects also need to be controlled at the level of expression values on which weighted PCA is 
performed, as batch-specific expression patterns across a sufficiently large set of genes can still account for 
sufficiently high amount of total variance to be picked by the PCA analysis. The expression values, 



€ 

xg
i = log(cg

i /α i +1) , were adjusted in two steps, separating drop-out (0 read count) observations from the rest. 
To adjust for the disparity in the frequency of the drop-out observations between batches, the lower bound of 
the zero-count observation fraction (u) was determined for each batch (assuming binomial process), and the 
weights 

€ 

wg
i  for each batch were multiplied by 

€ 

min(1,max(u) /zb ) , where 

€ 

max(u) is the maximum lower bound 
value amongst batches, and 

€ 

zb  is the fraction of zero-count observations in a given batch. This procedure 
ensures that the expected number of zero-count observations is equal amongst all of the batches. The second 
step adjusted the log expression magnitudes of non-zero observations so that the weighted means within each 
are each equal to the population-wide weighted mean. To further control for batch-specific effects, weighted 
PCA was performed using batch-specific centering (i.e. setting weighted mean of each batch to 0).  
 
Spatial placement of cell subpopulations. To spatially place neuronal subpopulations identified by 
PAGODA, we used significantly differentially expressed genes (absolute corrected Z-score > 1.96) as 
relative gene expression signatures for each subpopulation of interest compared to all other NPCs. In situ 
hybridization (ISH) data for the developing 13.5 day embryonic mouse were downloaded from the Allen 
Developing Mouse Brain Atlas (Website: ©2013 Allen Institute for Brain Science. Allen Developing Mouse 
Brain Atlas: http://developingmouse.brain-map.org) for all available genes (n=2,194). ISH data are 
quantified as gene expression energies, defined as expression intensity times expression density, at a 
grid voxel level. Each voxel corresponds to a 100 µm gridding of the original ISH stain images and 
corresponds to voxel level structure annotations according to the accompanying developmental reference 
atlas ontology. The 3-D reference model for the developing 13.5 day embryonic mouse derived from 
Feulgen-HP yellow DNA staining was also downloaded from the Allen Developing Mouse Brain Atlas for 
use as a higher resolution reference image. Energies for genes in each subpopulation's gene expression 
signature with corresponding ISH data available were weighted by expression fold change on a log2 scale 
and summed to constitute a composite overlay of gene expression. Background signal and expression 
detection in regions not annotated as part of the mouse embryo in the reference model were removed by 
applying a minimum gene energy level threshold of 8 units. We focused on spatial placements within the 
developing mouse forebrain and thus restricted gene energies to voxels annotated as ‘forebrain’ or 
‘ventricles, forebrain’ in the reference atlas ontology.  
 
In contrast to more complex in situ landmark association methods as presented by Satija et al.38 and 
Achim et al.39, the current method is focused on relative placement of mutually exclusive subpopulations. 
Because of this we are able to take advantage of both upregulated and downregulated gene sets in 
assigning the most likely spatial distribution of each identified subpopulation. For example, genes 
upregulated in the maturing NPCs relative to early NPCs can be used as indicators as to where the 
maturing NPC subpopulation is spatially localized. In addition, genes downregulated in maturing NPCs 
relative to early NPCs can also be used as indicators as to where maturing NPCs may be absent. 
Additionally, unlike Satija et al.38, we do not binarize the in situ data since we are particularly interested in 
gradients of expression across voxels or bins in our particular case. Likewise, due to the resolution 
limitations of our in situ data, where each voxel is much bigger than one cell, we are unable to precisely 
map individual cells to single locations as in Achim et al's method39. 
 
Implementation and data availability. The PAGODA functions are implemented in version 1.99 of scde R 
package, available at http://pklab.med.harvard.edu/scde/. The source code is available on GitHub 
(https://github.com/hms-dbmi/scde). The spatial mapping of neural cells based on the data generated by the 
Allen Institute for Brain Science has been implemented as a separate R package, called brainmapr, available 
from GitHub (https://github.com/hms-dbmi/brainmapr). The scRNA-seq data and gene count matrix for the 
NPC cells is available from Gene Expression Omnibus (GEO) under the GSE76005 accession number. 
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