Characterizing transcriptional heterogeneity through pathway and
gene set overdispersion analysis

Jean Fan', Neeraj Salathia®, Rui Liu®, Gwendolyn E. Kaeser®, Yun C. Yung®, Joseph L. Herman', Fiona
Kaper?, Jian-Bing Fan®°, Kun Zhang®, Jerold Chun®, Peter V. Kharchenko'®

1. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

2. lllumina Inc., San Diego, CA, USA

3. Department of Bioengineering, University of California, San Diego, CA, USA

4. Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps
Research Institute, La Jolla, CA, USA

5. Present address: AnchorDx Corporation, International Biotech Island, Guangzhou, Guangdong, China

6. Harvard Stem Cell Institute, Cambridge, MA, USA

Correspondence should be addressed to PVK (Peter_Kharchenko@hms.harvard.edu)

Abstract

The transcriptional state of a cell reflects a variety of biological factors, from cell-type specific features to
transient processes such as cell cycle, all of which may be of interest. However, identifying such aspects from
noisy single-cell RNA-seq data remains challenging. We developed pathway and gene set overdispersion
analysis (PAGODA) to resolve multiple, potentially overlapping aspects of transcriptional heterogeneity by
testing gene sets for coordinated variability amongst measured cells.



Single-cell transcriptome measurements’? provide an unbiased approach for studying the complex cellular
compositions of healthy and diseased tissues®®. High levels of technical noise'® and a strong dependency on
expression magnitude pose difficulties for principal component analysis (PCA) and other dimensionality
reduction approaches such as GP-LVM'! or tSNE'2. Even when cell-to-cell differences expose prominent
biological processes taking place within the measured cells, such as cell cycle or metabolic state variation,
these processes may not be of primary interest®. Such cross-cutting transcriptional features represent
alternative ways to classify cells, and pose a challenge for the commonly-used clustering approaches that aim
to reconstruct a single subpopulation structure*®'®. Partitioning methods, such as k-means clustering or the
specialized BackSPIN algorithm® may, for example, classify cells first based on cell cycle phase instead of
tissue-specific signaling state, if the cell cycle differences are more pronounced.

Here, we describe PAGODA, an alternative approach for analyzing transcriptional heterogeneity that aims to
detect all statistically significant ways in which measured cells can be classified. PAGODA evaluates
coordinated expression variability of genes within both annotated pathways and automatically detected gene
sets. Gene set testing with methods such as GSEA™ has been widely used for differential expression analysis
to increase statistical power and uncover likely functional interpretations. A similar rationale can be applied in
the context of heterogeneity analysis. For example, while cell-to-cell variability in the expression of a single
neuronal differentiation marker such as Neurod1 may be too noisy and inconclusive, coordinated upregulation
of many genes associated with neuronal differentiation in the same subset of cells would provide a prominent
signature distinguishing a subpopulation of differentiating neurons. We illustrate that in published data sets,
PAGODA recovers new and known subpopulations, suggesting their likely functional roles.

Transcriptional diversity in mouse neural progenitor cells (NPCs) is likely to depend on a variety of intrinsic and
external factors that include programmed cell death’, genomic mosaicism'®'” and exposure to signaling
lipids'®. Using scRNA-seq to assess a cohort of cortical NPCs from an embryonic mouse, we demonstrate that
PAGODA recovers the known neuroanatomical and functional organization of NPCs. Our approach identifies
multiple aspects of transcriptional heterogeneity within the developing mouse cortex that are difficult to discern
using existing heterogeneity analysis approaches.

To characterize significant aspects of transcriptional heterogeneity, PAGODA uses a series of steps (Fig. 1
and Online Methods). First, the effective sequencing depth, drop-out rate and amplification noise of each cell
are estimated using a previously described mixture model approach'® with minor enhancements (Step 1, Fig.
1). Using these models, the observed expression variance of each gene is renormalized based on the
genome-wide variance expectation at the appropriate expression magnitude (Step 2). Batch correction is also

performed at this stage. The resulting residual variance, modeled by the x° statistic, effectively distinguishes

subpopulation-specific genes (Supplementary Notes 1 and 2), and determines the contribution of each gene to
subsequent PCA calculations.

PAGODA then examines an extensive panel of gene sets to identify those showing a statistically significant
excess of coordinated variability (Step 3). The gene sets include annotated pathways, such as Gene Ontology
(GO) categories, as well as clusters of transcriptionally-correlated genes found within a given dataset (de novo
gene sets). The prevalent transcriptional signature of each gene set is captured by its first principal component
(PC), using weighted PCA to adjust for technical noise contributions. If the amount of variance explained by the
first PC of a given gene set is significantly higher than expected (Step 4, correcting for multiple hypotheses),
the gene set is said to be overdispersed, and is included in the subsequent analysis.

Many PCs will separate cells in a similar way, either because the same genes drive them, or because multiple
biological processes distinguish the same subsets of cells. To provide a non-redundant view of transcriptional
heterogeneity, PCs from significantly overdispersed gene sets are clustered, and those with similar gene
loadings or cell separation patterns are combined to form a single 'aspect' of heterogeneity (Step 5,
Supplementary Fig. 1). Major aspects of transcriptional heterogeneity can be explored numerically or through
an interactive web browser interface (Step 6). As we illustrate below, examining individual aspects and their
relationships can provide insights and functional clues not apparent from the most prominent cell classification.
Finally, if one or more aspects of transcriptional heterogeneity are determined to be extraneous to the
biological context, there is an option to control for them explicitly (Step 7).



To illustrate PAGODA on a complex cell population, we re-examined scRNA-seq data for 3,005 cells from the
mouse cortex and hippocampus’. This extensive dataset covers a variety of cell types, some of which exhibit
very distinct expression signatures. Applying PAGODA revealed nine major aspects of heterogeneity that
distinguish the seven top-level classes and two lower-level subpopulations originally identified by BackSPIN®, a
recursive partitioning method (Fig. 2). The functional interpretation of the identified aspects is evident from the
identity of the overdispersed GO categories. The most significant aspect separates oligodendrocytes, which
are easily distinguished by strong overdispersion of myelination-related pathways. Similarly, overdispersion of
immune, vascular and muscle-associated GO-annotated gene sets identify microglia, vascular endothelial and
mural subpopulations respectively. Other cell types, such as ependymal cells or different types of neurons, are
distinguished by de novo gene set signatures, with most overdispersed genes revealing their identity (e.g.
Gad1, Tbr1, Gabrab).

Aspects distinguishing many of the cell types appear to overlap, most frequently with the myelination signature.
For instance, a subset of 35 cells exhibits prominent expression of both immune response genes characteristic
of microglia as well as genes responsible for myelin sheath (Fig. 2 and
http://pklab.med.harvard.edu/scde/pagoda.links.html for all interactive PAGODA results). Similarly, a myelin-
associated expression signature is observed for a subset of vascular cells, astrocytes, pyramidal neurons and
interneurons. These hybrid signatures most likely correspond to cases in which two different cells were
captured together (see Supplementary Fig. 2 for co-occurrence frequencies). BackSPIN and other partitioning
methods would need to classify such cells based on a single signature or to isolate them as a separate class
without exposing their relationship to other groups. In contrast, PAGODA can expose multiple alternative
classifications of a given cell.

We further evaluated PAGODA performance by re-analyzing datasets that were used to present alternative
methods of heterogeneity analysis*®%, recovering previously identified subpopulations and identifying
additional biologically relevant features (Supplementary Note 3). In particular, PAGODA’s ability to associate a
given cell with multiple, potentially independent aspects of transcriptional heterogeneity allows one to focus on
biologically relevant subpopulations that are distinguished by subtle transcriptional variation. For instance, in
reanalyzing data for mouse CD4" T that was used to present an elegant GP-LVM approach®, PAGODA
successfully recovered ll4ra-1124 response and a closely aligned glycolysis aspect in addition to a prominent
mitosis-associated signature, without requiring explicit correction steps. Furthermore, PAGODA revealed a
prominent subpopulation of cells exhibiting an expression signature typical of dendritic cells that was not
previously observed.

As heterogeneity amongst NPCs may influence downstream neural diversity, we performed Smart-Seq® on 65
NPCs isolated from the cerebral cortex of 13.5-day embryonic mouse brain (Online Methods). The most
significant aspect of heterogeneity identified by PAGODA reflects gradual induction of the genes associated
with neuronal maturation and growth (Fig. 3a, top aspect). Approximately half of the cells express Dcx, Sox11,
and other known markers of neuronal maturation, with the most mature subset expressing genes involved in
neuronal maturation and growth cones (Neurod6, Gap43). Such cells maintain expression of some progenitor
markers (e.g., vimentin) and therefore likely represent developing, committed neurons. In contrast, the set of
early NPCs exhibits strong M- and S-phase signatures that are absent from the more mature NPCs, as well as
up-regulation of genes characteristic of early progenitor state?' (Sox2, Notch2, Hes1) captured by the “negative
regulation of neuronal differentiation” and “neural tube development” GO categories.

Maturation of neuronal progenitors is closely tied to the spatial organization of the developing cortex?. We
used spatial expression patterns® of genes differentially expressed between the early and maturing NPCs to
reconstruct the most likely spatial distribution of these cells within the mouse brain (Fig. 3b, Online Methods).
As expected, we found early NPCs localize close to ventricular zone (VZ). We also used in situ RNA-FISH
(Online Methods) to examine two genes, Rpa1 and Nnd, of unknown relationship to the embryonic cerebral
cortex (Fig. 3c). Consistent with their predicted pattern, Rpa7 was most prominent in proliferative regions. Ndn
localized in the post-mitotic regions (especially the cortical plate), as well as rare cells within the subventricular
zone (SVZ, Supplementary Fig. 3).



An additional subset of NPCs was distinguished by expression of Eomes, Neurod1, and other genes localized
to the SVZ region and thought to distinguish basal progenitors®"**. The Eomes signature marks cells with
intermediate levels of genes associated with neuronal maturation, as well as a subset of early NPCs
undergoing DNA replication, likely representing neuronally-committed NPCs maturing in the SVZ, and dividing
basal NPCs, respectively. These dividing cells express notch signaling genes (DIl1, Notch2, Mfng) concurrently
with Eomes and therefore likely represent nascent basal progenitors®.

Two other aspects cut across the main NPC maturation axis. The first is driven by prominent expression of
Ndn (Fig. 3a). Ndn, initially noted for high expression in mature neurons?’, has also been shown to be
expressed in the VZ%, and to restrict both proliferation and apoptosis rates in NPCs?*%’. In combination with
RNAscope analyses (Supplementary Fig. 3), we found Ndn to be expressed within a subset of NPCs,
approximately a quarter of which exhibit pronounced mitotic signatures and are likely localized in the SVZ. The
second cross-cutting aspect is coordinated expression of DIx homeodomain transcription factors. DIx genes
mark tangentially-migrating NPCs, which originate in the ganglionic eminence (GE) and migrate to the cortical
areas, giving rise to the GABAergic neurons®?°. The Dix-positive cells express other markers of tangentially
migrating NPCs, most notably Sp9 and Sp8 transcription factors®. Indeed, spatial localization of these cells
was predicted to be in the GE region, where tangentially-migrating NPCs are expected to originate (Fig. 3b). In
agreement with earlier observations of such NPCs undergoing mitosis in the cortical VZ/SVZ areas, two of ten
Dix-positive NPCs were captured in S-phase and one in M-phase.

To illustrate the methodological advantage of PAGODA, we re-examined our NPC data using alternative
analysis methods, including PCA, ICA, tSNE""?, GP-LVM"", and BackSPIN® (Supplementary Figs. 4 and 5).
While none of the methods were able to recover all of the identified subpopulations, BackSPIN provided the
most compelling results, capturing heterogeneity involving expression of DIx and Prdx4/Mest. However, the
reported clustering grouped only some of the cells associated with each signature, illustrating limitations of
partitioning-based interpretation in a complex biological context.

Just like whole organisms, individual cells can be classified according to a variety of meaningful criteria. For
example, tangentially migrating NPCs, despite being a distinct progenitor subtype, go through the same
neuronal maturation process as other NPCs. By identifying significantly overdispersed gene sets, PAGODA is
able to effectively recover such complex heterogeneity structures. The potential ambiguity of classification
illustrated by the NPCs is likely to be present in many biological contexts. In such cases, an optimal partition or
clustering of cells is unlikely to be fully informative, and the analysis can benefit from concurrent interpretation.
The gene-set-based approach and interactive interface implemented by PAGODA aims to identify and facilitate
interpretation of significant transcriptional features separating cells within the population.

Figure legends

Figure 1. Overview of PAGODA. Transcriptional heterogeneity is analyzed in seven steps: 1. Error models
are fit for each cell to quantify the dependency of amplification noise and drop-out probabilities on the
expression magnitude'®. A model fit for a cell is shown, separating drop-out and amplified components, and the
95% confidence envelope of the amplified component; 2. The residual expression variance for each gene is
determined relative to the transcriptome-wide expectation model (red curve), taking into account the
uncertainty in the variance estimates of each gene by determining effective degrees of freedom (kg ) for the

X2 distribution; 3. Weighted PCA analysis is performed independently on functionally-annotated gene sets, as

well as de novo gene sets determined based on correlated expression in the current dataset; 4. Cell PC scores
(orange-green gradient) of overdispersed gene sets (those with significantly higher than expected variance
explained by the PC) are identified as significant aspects of heterogeneity; 5. Redundant aspects that are
driven by the same genes or show similar patterns of cell separation are grouped to provide a succinct
overview of heterogeneity; 6. A web interface is used to navigate the identified aspects of heterogeneity,
associated gene sets and gene expression patterns. 7. Some aspects of heterogeneity may be deemed
artifactual or extraneous based on the biological question, and can be controlled for in a subsequent iteration.

Figure 2. PAGODA analysis of data from 3,005 mouse cortical and hippocampal cells®. The dendrogram
shows the overall clustering of the cells, and the row immediately below specifies the group to which each cell



was assigned in the original analysis®. The main panel shows the top 9 significant aspects (P < 0.05) of
heterogeneity (rows) detected by PAGODA based on gene sets defined by GO annotations. The aspect scores
(Cell PC score) are oriented so that high (orange) and low (green) values generally correspond to increased
and decreased expression of associated gene sets, respectively. Row labels summarize key functional
annotations of gene sets in each aspect. Two lower panels show expression patterns of top-loading genes for
innate immune response (from the aspect distinguishing neuroglia), and myelin sheath (distinguishing
oligodendrocytes). A population of ~35 cells expressing both signatures is marked by a green bar, and most
likely represents capture of two associated cells of different type. The bottom panel shows images of the
microfluidic traps corresponding to some of the dual-signature cells, along with cells (leftmost two) exhibiting
only the oligodendrocyte signature. Green numbered boxes below the main panel highlight cells showing a
combination of oligodendrocyte and other cell type signatures (humbered 1-5: vascular endothelial, astrocytes,
CA1 neurons, Gad1/2 interneurons and neuroglia).

Figure 3. Transcriptional heterogeneity of 65 neuronal progenitor cells in embryonic mouse cortex.

a. Top eight significant (P < 0.01) aspects of heterogeneity are shown, labeled by their primary GO category or
driving genes. The top aspect tracks induction of neuronal maturation pathways, driving the overall
subpopulation structure. Mitotic and S-phase signatures in early NPCs account for the next two most
significant aspects, with the S-phase aspect incorporating closely matching expression patterns of genes
responsible for NPC maintenance. Color codes in the top panel summarize key subpopulations of NPCs
distinguished by the detected heterogeneity aspects.

b. Location of early vs. maturing NPC classes within embryonic brain. In situ hybridizations in E13.5 mouse
brain are shown for Tyro3 and Nfasc, with the two heatmap rows above showing scRNA-seq expression.
Computational prediction (third panel) based on the overall transcriptional profile places early NPCs near VZ,
and maturing ones in SVZ (subventricular zone)/CP regions. In situ images were generated by Allen Institute
for Brain Science?®. The lower panel shows anatomical placement of the DIx-expressing NPCs, and in situ
images for the associated genes.

c. Validation of genes associated with specific subpopulations by in situ hybridization. Coronal E13.5 brain
sections labeled using RNAscope probes for Rpa1 (left) and Ndn (right). Rpa1 showed high expression in the
ventricular (VZ) and sub-ventricular zone (SVZ). Ndn, which is marks a distinct subpopulation of both mature
and early NPCs, shows prominent expression throughout the CP, with rarer high expressing cells in the VZ
and SVZ (black arrows).

Methods

Isolation and single-cell RNA-seq of mouse neural progenitor cells (NPC) and astrocytes (ASC)s
Single NPCs were isolated from C57BL/6J embryonic day 13.5 cortices for RNA-sequencing. Timed-pregnant
mice were sacrificed by deep anesthesia followed by cervical dislocation. The embryos were quickly removed
and cortical hemispheres were isolated, ganglionic eminences removed, and all pups brains were pooled. All
animal protocols were approved by the Institutional Animal Care and Use Committee at The Scripps Research
Institute (La Jolla, CA) and conform to the National Institutes of Health guidelines.

Single cells were isolated by gentle trituration in ice-cold phosphate buffered saline containing 2 mM EGTA
(PBSE) using P1000 tips with decreasing bore diameter. Cells were then filtered through a 40 uM nylon cell
strainer and stained with propidium iodide (Pl), a live-dead stain, and fluorescence activated single cell sorting
(FACS) was performed selecting for Pl negative cells. Samples remained on ice throughout the process and
total processing time from cervical dislocation to sorting was limited to 2 hours. Single cells were sorted directly
into cell lysis buffer provided in the Clontech SMARTer® Ultra™ Low RNA Kit for lllumina® Sequencing (cat #
634936), and sequencing libraries were generated using the manufacturer’s protocol. Resulting libraries were
sequenced on the lllumina® HiSeqTNI 2000 sequencing platform.

Gene validation using in situ hybridization with RNA-scope

Mouse E13.5 embryos were removed from timed pregnant mice and prepared according to RNAscope
instructions for paraffin embedded tissue. RNAscope probes (Advanced Cell Diagnostics) were designed by
the manufacturer (Cat. # : GINS2 435891, RPA1 435911) and sections were processed using RNAscope 2.0



High Definition Reagent Kit - BROWN (Cat. #:310035) according to the manufacturer’s instructions. Sections
were imaged on a Ziess Axioimager at 20x magnification.

Previously published single-cell RNA-seq data.

For the mixture of cultured human neuronal progenitor cells (NPCs) and primary cortical samples from Pollen
et al”°, SRA files for each study were downloaded from the Sequence Read Archive
(http://www.ncbi.nim.nih.gov/sra) and converted to FASTQ format using the SRA toolkit (v2.3.5). FASTQ files
were aligned to the human reference genome (hg19) using Tophat (v2.0.10) with Bowtie2 (v2.1.0) and
Samtools (v0.1.19). Gene expression counts were quantified using HTSeq (v0.5.4). Read counts for the Th2
data by Buettner et al’ were downloaded from the supplementary site
(http://github.com/PMBio/scLVM/blob/master/data/Tcell/data_Tcells.Rdata). Read (or UMI) count matrices for
other two datasets were downloaded from GEO: GSE60361 for Zeisel et al’; GSE59739 for Usoskin et al’.

Fitting single-cell error models. Following the approach described in Kharchenko et al'®, the read count for a
gene g in a cell i was modeled as a mixture of a negative binomial (signal) and Poisson (drop-out)

components: ¢, ~ pf(eg)Poisson()th)+(l—pl.d(eg))NB(ae Hl.(eg)) . where p!(e,) is the probability of

ig?
encountering a drop-out event in a cell i for a gene with population-wide expected expression magnitude e,
(FPKM); Abg =0.1 is the low-level signal rate for the dropped-out observations; Bi(eg) is the negative binomial
size parameter (see functional form below); and «; is the library size of cell /, as inferred by the fitting
procedure. The single-cell error models were fitted using the approach described in Kharchenko et al*®, with
the following modifications. 1. Rather than estimating expected expression magnitudes of genes using all
pairwise comparisons between all other cells, each cell was compared to its kK most similar cells (based on
Pearson linear correlation of genes detected in both cells for any pair of cells). The value of k was chosen to
approximate the complexity of the dataset (1/3™ of the cells for mouse and human NPC datasets, 1/5" for the
larger Zeisel et al.’ and Usoskin et al.* datasets). 2. The count dependency on the expected expression
magnitude was estimated on the linear scale with zero intercept. 3. To improve fit, the drop-out probability was
modeled using logistic regression on both expression magnitude (log scale) and its square value. 4. Instead of
fitting a constant value for the negative binomial size parameter 0, it was fit as a function of expression

magnitude, using the following functional form: log(8)=a+(h-a)/ (1 + 10(""”)*3)r , where x is the expression

magnitude (log scale), and a,h,m,s,r are parameters of the fit. This functional form provides a more flexible fit
than the 6 = (a, +a,/x)”" form used in DESeq®', while allowing for stable asymptotic behavior.

Evaluating overdispersion of individual genes.
For each gene, the approach estimates the ratio of observed to expected expression variance and the
statistical significance of the observed deviation from the expected value. To illustrate the rationale, we start

with a Poisson approximation. Let c; be the number of reads observed for a gene g in a cell i. If such reads
follow a Poisson distribution with the mean u, and variance v, (both equal to some Poisson rate Ag), then

k
. 2
Fisher's index of dispersion D, = E(c; —ug) /v, follows yx;_, distribution®’. While for the Poisson case
i=1
v, = u,, for negative binomial process, v, = u, +(ug)2/9, where 6 is the size parameter. As 0 decreases
from very high values where the negative binomial is well approximated by a Poisson, D, diverges from Xf_l-
Analytical adjustments of Dg based on the negative binomial moments can improve Xz approximation®. For

more accurate approximation we used a numeric correction of the Xz degrees of freedom, depending on the
magnitude of 6, so that D, ~ Xﬁ(g) (Supplementary Note 2, Figure SN2.2).

To account for the possibility of drop-out events, weighted sample variance estimates were used, so that:

D, = E[W;(c; —u;)z]/[y; +(u,)’ /Hi(eg)] ~ X;fg, where w! is the probability that the measurement in a cell i

cell i



k
was not a drop-out event based on the error model for cell i, and kg = Ew;f(ﬁi(eg)) is the effective degrees of
i=1
freedom for the gene g. u; =e,a,, Where ¢, is the expected expression magnitude of a gene g across the
measured cells.

Since negative binomial (or NB/Poisson mixture) models do not fully capture the variability trends observed in
the real scRNA-seq measurements, D, estimates for the real data can systematically deviate from 1. To adjust

for this non-centrality, we normalized Dg by its transcriptome-wide expectation value D;, where D; models

the transcriptome-wide dependency of D, on gene expression magnitude. D; estimates were obtained using

a general additive model (GAM, fit using the mgcv R package) as a smooth function of gene expression
magnitude e, . To improve smoothness, the GAM fit was performed on the corresponding squared coefficient

of residual variance (D, /eg)z. The fit is performed on all of the genes. The P value of overdispersion for a

gene g was then be calculated as Pg”d = sz (ngg /D;), where Fx? is CDF of Xz distribution with k degrees of

freedom.

To improve stability of the estimates with respect to outliers, a Winsorization procedure® was applied to the
read count matrix prior to the variance evaluation described above. To ensure that the outliers are trimmed in a
manner independent of the total cell coverage, the Winsorization procedure was applied to the FPM matrix (i.e.
normalizing counts by the library size), that were then translated back into the integer counts. A trim value of 3
was used for all datasets (i.e. observations from the three highest and tree lowest cells for each gene were
Winsorized).

Weighted PCA and significance of pathway overdispersion. For PCA the data was transformed to better
approximate the standard normal distribution. Specifically, PCA was carried out on a matrix of log-transformed

read counts with a pseudocount of 1, normalized by the library size: x; = log(c; /a; +1). The values for each
gene (matrix row) were then scaled so that the weighted variance of a given gene matched the tail probabilities

of the distribution for a standard normal process: y; = x;\/QN(P;d)/mrwg (x,), where Q, is the quantile

function of the standard normal distribution, and var,, (xg) is the weighted variance of values X, As in our

previous work'?, the weight used for the clustering and PCA steps included an additional damping coefficient k
=0.9: w; =1-k* plfj (eg)p”g (c;), which improved the stability of the subsequent cell clustering for noisy

datasets (p”g(c;) is a probability of observing c; counts in a drop-out event, evaluated from the Poisson PDF).

Weighted PCA was performed for each gene set as described by S. Bailey®, recording first (and optionally
subsequent) principal components, the magnitude of the eigenvalue ( A,) and associated cell scores for each

gene set. Statistical significance of the A, eigenvalues obtained for each gene set (overdispersion P value for a
set s, Ps”d) was evaluated based on the Tracy-Widom F, distribution>® F,(m,n,), where m is the number of
genes in a given set s, and n, is the effective number of cells, determined to fit the distribution of the randomly
sampled gene sets (containing the same number of genes as the actual gene sets). The presented results

used pathways annotated by Gene Ontology (GO), restricting evaluation to the GO terms that had between
1000 and 10 annotated genes.

Identification and statistical treatment of de novo gene clusters. Since some aspects of transcriptional
heterogeneity can be driven by genes that are poorly represented or not at all described by the annotated
pathways, PAGODA incorporates into the overall analysis de novo gene sets that group genes showing
correlated patterns of expression across the cells measured in a particular dataset. By default, PAGODA,
implements a straightforward clustering procedure: a hierarchical clustering is performed using Ward method
(as implemented by the hclust package in R) using a Pearson correlation distance on the normalized
expression matrix (that is used for the weighted PCA step described above). The resulting dendrogram is cut
to obtain a pre-defined number of de novo gene clusters (the results shown use 150 clusters). As there are



many alternative methods for clustering co-expressed genes, PAGODA implementation provides parameters
to use alternative clustering procedures.

Since de novo gene clusters are by purposefully selected to contain genes with correlated expression profiles,
the amount of variance explained by the first principal component (magnitude of A,) will be higher than
expected from random matrices, and cannot be modeled by the same Trace-Window F, distribution as
previously-annotated gene set. To evaluate statistical significance of overdispersion, a background distribution
of A, was generated by performing the same hierarchical clustering and weighted PCA procedure on

randomized matrices (where cell order was randomized for each gene independently, 100 randomizations).
The A, values were normalized relative to Tracy-Widom F; expectation as A, = [Aj —(an” +bn)]/«/v1TW :

where A" and v/ are the mean and variance of A, predicted by the Tracy-Window F; distribution, and

coefficients a and b are determined by the linear model A, ~ A" +n. This standardized residual A’ was
modeled using Gumbel extreme value distribution, the parameters of which were fit using extRemes package
in R. The overdispersion P value for each de novo gene set were determined from the tails of that distribution.
The subsequent procedures treated de novo gene sets and annotated gene sets in the same way.

Clustering of redundant heterogeneity patterns. To compile a non-redundant set of aspects, the PC cell
scores (projections on the eigenvector) from each significantly overdispersed (5% FDR, as estimated by the
Benjamini-Hochberg method®’) gene set were normalized so that the magnitude of their variance corresponds

to the tail probability of the ¢ distribution: var(s,) = 0, . (P*)/(n 1), where Q . i the quantile function of
the Xz distribution with n degrees of freedom (n is the number of cells in the dataset). The redundant aspects

of heterogeneity were reduced in two steps. First, aspects reflecting transcriptional variation of the same genes
were grouped by evaluating similarity of the corresponding gene loading scores in combination with the pattern

similarity using the following distance measure between gene sets iand j:d; = (1 - \/‘cor(li,lj) *cor(si,sj)‘),

where cor is Peason linear correlation, l,.,lj are the loading scores of genes found in both j and j sets, and s,,s;
are the corresponding PC cell scores (dlj was set to 1 if there were less than 2 genes in common between the
gene sets j and j). The distance dlj was then used to cluster the aspects, using hierarchical clustering with

complete-linkage. Clusters separated by a distance less than 0.1 were grouped. The cell scores of the grouped
aspects were determined as cell scores of the first principal component of all aspects within a grouped cluster.

The second step, aimed at grouping aspects showing similar patterns of cell separation, was accomplished by

another round of hierarchical clustering using cor(s,,s;) distance measure with Ward clustering procedure.

The similarity threshold for the final grouping of similar aspects varied between datasets depending on their
complexity (0.5 for the human NPC data, 0.95 for the mouse cortical/hippocampal dataset, 0.9 for the T cell
and the mouse NPC data).

Batch correction. To control for the effect of categorical covariates, such as presence of multiple batches in
the data, the approach contrasted whole-population and batch-specific variance estimates. Specifically, for
each gene g, a batch-specific average expression magnitude was estimated for each batch b: ¢, ,. These

batch-specific expression estimates were then used to obtain batch-adjusted values of Dg, w; and kg (Dg’b,
w;b and kg,b respectively). To identify genes showing batch-specific variation, the ratio of batch-specific and
batch-adjusted variance was evaluated as a, =D, , /D, . The residual variance of genes showing discrepant

batch- and population-specific variance was taken to be D;’ = min(ag,l la,)*D,, /D; ,and
od b e
P, =ing(k8Dg /D).

The procedure above ensures that batch-specific effects are not reflected in the magnitude of the adjusted
variance. Batch effects also need to be controlled at the level of expression values on which weighted PCA is
performed, as batch-specific expression patterns across a sufficiently large set of genes can still account for
sufficiently high amount of total variance to be picked by the PCA analysis. The expression values,



x; = log(c; /a; +1), were adjusted in two steps, separating drop-out (0 read count) observations from the rest.

To adjust for the disparity in the frequency of the drop-out observations between batches, the lower bound of
the zero-count observation fraction (u) was determined for each batch (assuming binomial process), and the
weights w; for each batch were multiplied by min(l,max(u)/z,), where max(u) is the maximum lower bound
value amongst batches, and z, is the fraction of zero-count observations in a given batch. This procedure
ensures that the expected number of zero-count observations is equal amongst all of the batches. The second
step adjusted the log expression magnitudes of non-zero observations so that the weighted means within each
are each equal to the population-wide weighted mean. To further control for batch-specific effects, weighted
PCA was performed using batch-specific centering (i.e. setting weighted mean of each batch to 0).

Spatial placement of cell subpopulations. To spatially place neuronal subpopulations identified by
PAGODA, we used significantly differentially expressed genes (absolute corrected Z-score > 1.96) as
relative gene expression signatures for each subpopulation of interest compared to all other NPCs. In situ
hybridization (ISH) data for the developing 13.5 day embryonic mouse were downloaded from the Allen
Developing Mouse Brain Atlas (Website: ©2013 Allen Institute for Brain Science. Allen Developing Mouse
Brain Atlas: http://developingmouse.brain-map.org) for all available genes (n=2,194). ISH data are
quantified as gene expression energies, defined as expression intensity times expression density, at a
grid voxel level. Each voxel corresponds to a 100 pym gridding of the original ISH stain images and
corresponds to voxel level structure annotations according to the accompanying developmental reference
atlas ontology. The 3-D reference model for the developing 13.5 day embryonic mouse derived from
Feulgen-HP yellow DNA staining was also downloaded from the Allen Developing Mouse Brain Atlas for
use as a higher resolution reference image. Energies for genes in each subpopulation's gene expression
signature with corresponding ISH data available were weighted by expression fold change on a log, scale
and summed to constitute a composite overlay of gene expression. Background signal and expression
detection in regions not annotated as part of the mouse embryo in the reference model were removed by
applying a minimum gene energy level threshold of 8 units. We focused on spatial placements within the
developing mouse forebrain and thus restricted gene energies to voxels annotated as ‘forebrain’ or
‘ventricles, forebrain’ in the reference atlas ontology.

In contrast to more complex in situ landmark association methods as presented by Satija et al.*® and
Achim et al.*®, the current method is focused on relative placement of mutually exclusive subpopulations.
Because of this we are able to take advantage of both upregulated and downregulated gene sets in
assigning the most likely spatial distribution of each identified subpopulation. For example, genes
upregulated in the maturing NPCs relative to early NPCs can be used as indicators as to where the
maturing NPC subpopulation is spatially localized. In addition, genes downregulated in maturing NPCs
relative to early NPCs can also be used as indicators as to where maturing NPCs may be absent.
Additionally, unlike Satija et al.*®, we do not binarize the in situ data since we are particularly interested in
gradients of expression across voxels or bins in our particular case. Likewise, due to the resolution
limitations of our in situ data, where each voxel is much bigger than one cell, we are unable to precisely
map individual cells to single locations as in Achim et al's method™.

Implementation and data availability. The PAGODA functions are implemented in version 1.99 of scde R
package, available at http://pklab.med.harvard.edu/scde/. The source code is available on GitHub
(https://github.com/hms-dbmi/scde). The spatial mapping of neural cells based on the data generated by the
Allen Institute for Brain Science has been implemented as a separate R package, called brainmapr, available
from GitHub (https://github.com/hms-dbmi/brainmapr). The scRNA-seq data and gene count matrix for the
NPC cells is available from Gene Expression Omnibus (GEO) under the GSE76005 accession number.
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