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Abstract— Facial activity is the most direct signal for per-
ceiving emotional states in people. Emotion analysis from facial
displays has been attracted an increasing attention because of its
wide applications from human-centered computing to neuropsy-
chiatry. Recently, image representation based on sparse coding
has shown promising results in facial expression recognition.

In this paper, we introduce a novel image representation
for facial expression analysis. Specifically, we propose to use
the histograms of nonnegative sparse coded image features to
represent a facial image. In order to capture fine appearance
variations caused by facial expression, logarithmic transforma-
tion is further employed on each nonnegative sparse coded fea-
ture. In addition, the proposed Histograms of Log-Transformed
Nonnegative Sparse Coding (HLNNSC) features are calculated
and organized in a pyramid-like structure such that the spatial
relationships among the features are captured and utilized
to enhance the performance of facial expression recognition.
Extensive experiments on the Cohn-Kanade database show that
the proposed approach yields a significant improvement in
facial expression recognition and outperforms the other sparse
coding based baseline approaches. Furthermore, experimental
results on the GEMEP-FERA2011 dataset demonstrate that
the proposed approach is promising for recognition under less
controlled and thus more challenging environment.

I. INTRODUCTION

Facial activity is the most powerful and natural means

of emotion expression and perception. Emotion analysis

from facial displays has attracted an increasing attention

because of its wide applications such as human behavior

analysis, human-centered computing, neuropsychiatry, and

entertainment. Extensive efforts have been devoted to facial

expression recognition from visual images and video data

and great progress has been made over the years on automatic

facial expression recognition ([27], [41], [32]). However,

recognition performance suffers dramatically in real-world

conditions with unconstrained pose and illumination, low res-

olution, and spontaneous facial displays as demonstrated in

the most recent Facial Expression Recognition and Analysis

(FERA2011) challenge [32].

Most existing approaches for facial expression analysis

utilize various human hand-designed features extracted from

videos/images including Local Binary Patterns (LBP) ([29],

[32]), Histograms of Oriented Gradients (HOG) ([12], [6]),

Haar wavelet [34], Gabor coefficients ([44], [43], [31],

[2], [34]), and Scale-invariant feature transform (SIFT) de-

scriptors [12]. These features are all designed deliberately

with specific expert knowledge. Although these features can

achieve promising performance when they have the desirable

discrimination power in a specific application, their general-

ization between different applications is still questionable.

To find the best feature set for a specific application, perfor-

mance evaluation is conducted by enumerating all candidate

feature sets on a testing dataset. It is not surprisingly one

kind of these features need to be replaced by another one

when a different testing dataset is used.

Unlike the human tuned feature representations, sparse

coding technique, proposed by Olshausen and Field [26],

is an unsupervised feature extraction method aiming to find

an over-complete feature representation for the input data.

Since the sparse coding representation is over-complete, it

can capture a wide range of variations that are not targeted

to a specific application. When it is employed in a specific

application, a few sparse coding basis vectors that are re-

lated to the application will be selected according to the

training data such that each sample data is represented by

a linear combination of these selected basis vectors. Sparse

representation has attracted increasing attention and shown

promising results in the application of facial expression

recognition ([40], [23], [38], [19], [22], [47]).

Most recently, Nonnegative Sparse Coding (NNSC) tech-

nique [11] has been developed to integrate the advantages of

the sparse coding [26] and Nonnegative Matrix Factorization

(NMF) [18]. By using NNSC, each image is represented by

only “additions” of a few basic patterns. This nonnegative

representation is consistent with human vision system, where

the firing rate of the simple cell in the primary visual cortex

is nonnegative [11]. More importantly, it is more natural to

represent a face that is a combination of facial components

(e.g., eyes, eyebrows, nose, and lip) with different shapes and

appearance. There are a few early attempts ([3], [46], [39])

managing to take advantage of nonnegative representation

for facial expression analysis.

In this work, we propose a novel sparse-coding based

image representation for facial expression analysis. Inspired

by the Bag-of-Features (BoF), we intend to utilize the

statistics of the sparse coded image features to capture the

facial appearance variations caused by facial expressions.

Our proposed approach has four primary contributions.

First, we employ the NNSC technique to learn an over-



complete dictionary from a large number of local patches

extracted from facial images without expression labels. In

this work, we employ the Labeled Faces in the Wild (LFW)

database [15] for constructing the NNSC dictionary. The

LFW database has a wide range of variations in demograph-

ics, camera view points, and more importantly, spontaneous

facial expressions as shown in Fig. 1. We believe that, the

dictionary learned from LFW database is more compre-

hensive than from any publicly available facial expression

database and is especially suitable to characterize sponta-

neous facial expression under uncontrolled environment.
Second, given a new input image, thousands of image

patches can be extracted, each of which is represented by

an NNSC coded image feature. A histogram, in this work,

is calculated to represent the statistics of the NNSC coded

image features for each facial image.
Third, most of the elements of an NNSC coded image

feature, however, have very small values (around 10−4). Our

data analysis on facial images shows that over 50% nonzero

elements are less than 0.1, while the full range is (0, 6]. As a

result, the fine appearance variations cannot be characterized

if the histograms are computed from the original NNSC

coded features. In order to handle this issue, logarithmic

transformation is further employed on each NNSC coded

feature to enhance their discriminative ability.
Finally, motivated by the success of spatial pyramid

matching in image classification [35], the proposed His-

tograms of Log-Transformed NNSC (HLNNSC) features are

organized in a pyramid-like structure such that the spatial

relationships among the features are captured and utilized to

enhance the performance of facial expression recognition.
An overview of the proposed Spatial Pyramid structured

HLNNSC (SP-HLNNSC) based approach is illustrated in

Fig. 1. In order to evaluate the proposed approach, exten-

sive experiments have been conducted on two well-known

facial expression datasets. The results on the Cohn-Kanade

database show that the proposed method yields a signifi-

cant improvement and outperforms the other sparse coding

based baseline approaches. Furthermore, the results on the

GEMEP-FERA2011 dataset demonstrate that the proposed

approach achieves a promising recognition performance un-

der less controlled and thus more challenging environment.

Fig. 1. An overview of facial expression recognition using histograms of
log-transformed NNSC coded features with a pyramid-like structure.

II. PRIOR WORK

Generally speaking, most of existing work on facial

expression recognition are based on a two-stage training

procedure. First, a set of features are extracted from the

original input images/videos to characterize expression re-

lated facial appearance or geometry changes; and then a

target facial expression is recognized by different recognition

engines from the extracted features. According to the features

employed, these approaches can be grouped into two classes:

holistic methods ([2], [29], [34], [32], [36], [45]) extracting

features from the whole face and local methods ([13], [44],

[28], [31], [5], [9], [43], [17]) extracting features by detecting

and tracking a small set of predefined feature points. Local

approaches require to deliberately design special purposed

features for each facial expression, respectively; and are sen-

sitive to tracking errors. Holistic approaches, on the contrary,

often employ general-purposed image features such as Gabor

wavelet coefficients ([2], [34]), Haar wavelet ([34], [36]), and

histograms of LBP features ([45], [32], [29]), where how

these features are selected and utilized is determined by the

recognition engine.

Besides these human tuned feature representations, sparse

coding based feature representations ([40], [23], [38], [19],

[22], [47], [3], [46], [39]) have been recently employed

in facial expression analysis. Among them, sparse rep-

resentations with nonnegative constraints ([3], [46], [39])

have shown promising results. Zhi et al [46] developed a

Graph-Preserving Sparse NMF (GPSNMF) method. With

the locality-preserving constraints, the GPSNMF achieves

a better discriminant capability and is effective to handle

the partial occlusions in the facial images. Zafeiriou and

Petrou [39] proposed a Projected Gradient Kernel NMF

(PGKNMF) method by combining the NMF with arbitrary

positive definite kernels and obtained reasonable perfor-

mance in the application of facial expression recognition.

Bociu and Pitas [3] developed a Discriminant NMF (DNMF)

method, where the sparse coding based image decomposition

is performed in a supervised way by employing the class

information in the cost function.

Our proposed approach differs from aforementioned sparse

coding based methods in two major aspects. First, instead of

using the sparse coded image features directly, we exploit

the statistics of the sparse coded features. Second, the sparse

coded features are organized into a pyramid-like structure to

incorporate their spatial correlations.

III. METHODOLOGY

A. Feature Representation based on NNSC

In this work, the NNSC technique [10] is adopted to build

an over-complete and discriminative feature representation,

i.e., a dictionary D = [D1, D2, ...DS ] with S basis vectors,

for input data. The input data can be whole images or image

patches extracted from the region of interest. Specifically, we

learn basic vectors from local patches extracted from facial

images because the local patches are more appropriate to

describe the facial images, which consist of multiple facial

components such as eyes, nose, lip and eyebrows, and can

capture a wide range of facial shape/appearance variations.

Given a learned dictionary D, the information contained

in each image patch Pi of a set of K patches P =



[P1, P2, · · · , PK ] can be encoded by a linear combination

of a few basis vectors with a sparse coefficient vector Zi.

Different from the traditional sparse coding technique [26],

where the image patch Pi is represented as the addition and

subtraction of basis vectors in the dictionary, only additive of

basis vectors are permitted using NNSC. In other words, each

element in Zi is nonnegative. This nonnegative constraint is

proved to be more compatible with the intuition of “come

together to form a whole” and is especially suitable to

represent a part-based object such as the face [18].

The NNSC based feature extraction in our work consists

of two major steps: dictionary construction, also called basis
vectors learning and sparse coefficients estimation. First,

the basis vectors learning is performed by minimizing the

reconstruction errors between the image patches P and the

reconstructed data with an additional nonnegative constraint.

The objective function for optimization is as follows:

Ẑ = argmin
Z

‖P − DZ‖22 + λ‖Z‖1, (1)

where Z = [Z1, Z2, · · · , ZK ] is the set of optimized sparse

coefficient vectors for all patches P such that each image

patch in Pi can be reconstructed as P̂i = DZi; and λ is a

penalty parameter used to control the sparsity of Z.

The optimization process is divided to two subproblems.

One is to find the optimized sparse coefficient vectors Z
given the current estimation of the dictionary Dt at the tth

iteration, which solution can be found as follows [10]:

Ẑ
t+1

= Zt[(Dt)T P]./[(Dt)T Dt + λ] (2)

The other one is to find the best basis vectors to construct

D, while sparse coefficient vectors Zt is fixed. Because of the

nonnegative constraints, this subproblem is more complicated

than that in the traditional sparse coding learning. Following

the work by [10], we use projected gradient descent method

to solve this subproblem as follows:

1. D′= Dt − λ(DtZt − P)(Zt)T .

2. Set the negative values in D′ to zero.

3. Rescale each column of D′ to a vector with unit L2

norm, and then set Dt+1 = D′.
Therefore, we can update Dt and Zt alternatively with the

other one fixed. After the dictionary D is constructed, we can

estimate the sparse coefficient vector for a new input image

patch. Following the same optimization process described in

Eq.(2), we can find the best Zi, which is satisfied with the

nonnegative constraint and gives the minimum reconstruction

error, with a fixed D.

B. HLNNSC Coded Features

As discussed above, an NNSC coefficient vector Zi is

employed to represent a local image patch. However, facial

expression analysis is usually performed on the whole face

region such that the expression-related facial shape deforma-

tion and facial appearance variation can be fully captured.

In this work, we randomly extract N local patches from

each face region. By doing so, the information of each face

can be sufficiently and concisely characterized by these local

patches. As a result, each image Ij can be represented by

Z̃j = [Z<1,j>, · · · , Z<N,j>], where Z<i,j> is the NNSC

coefficient vector corresponding to the ith image patch Pi

extracted from Ij .

We should note that the dimension of Z̃j (N ∗ S) is

very large: usually above 1 million. In order to reduce the

dimension of Z̃j , we develop a new feature representation,

i.e., the histograms of NNSC coefficients (HNNSC). Specif-

ically, the HNNSC feature Hj for the image Ij is defined as

Hj = [H<1,j>, · · · , H<m,j>, · · · , H<S,j>], where H<m,j>

is estimated as

H<m,j> = hist(Z<1,m,j>, · · · , Z<i,m,j>, · · · , Z<N,m,j>) (3)

where Z<i,m,j> is the mth element of Z<i,j>. Hence,

H<m,j> is the histogram of the mth element of the NNSC

coefficient vectors corresponding to N image patches of Ij .

The HNNSC intends to model the distribution of the

NNSC coded features on the whole image. However, most

of the elements of an NNSC coded feature have very small

values (around 10−4). As an example, we use 100 facial

images with different subjects and different expressions and

extract 2000 image patches from each image. For each image

patch, an NNSC coefficient vector with 4000 coefficients

is calculated. Thus, we have 4000 ∗ 2000 ∗ 100 NNSC

coefficients in total, from which a statistic analysis is per-

formed. Fig. 2(a) shows the distribution of all nonzero NNSC

coefficients on these 100 images. As illustrated in Fig. 2(a),

over 50% nonzero NNSC coefficients are less than 0.1, while

the full range is (0, 6]. Therefore, the histogram computed

from this distribution will be extremely unbalanced such that

the sample data are concentrated in the bin with the smallest

value. Such a histogram is not able to characterize the subtle

facial appearance variations.

(a) (b)

Fig. 2. (a) The distribution of nonzero NNSC coefficients, most of which
are within the range of [0,0.1]. (b) The distribution of log-transformed
nonzero NNSC coefficients.

In image processing, we know that logarithmic transfor-

mation is useful to highlight the details in the dark region.

Motivated by this, we apply the logarithmic transformation

on each nonzero NNSC coefficient to enhance its discrimina-

tive ability. As shown in Fig. 2(b), the distribution of the log-

transformed nonzero NNSC coefficients now becomes a bell-

shape. Over 50% transformed coefficients (corresponding to

(0, 0.1] before taking transformation) have been stretched in

a range of [-10,-2].



C. HLNNSC with a Spatial Pyramid Structure

HLNNSC actually belongs to the category of bag-of-
feature image representations, where the spatial information

of the local patches are eliminated. However, the layout of

different facial components is crucial to represent a face. The

spatial relationships among the image patches encode impor-

tant information of face deformation and facial appearance

variations caused by facial expression changes.

Recently, a Spatial Pyramid Matching (SPM) approach,

utilizing a spatial pyramid constructed feature representation,

has been demonstrated to be effective on image classification

problems [35]. Motivated by this, we extend our HLNNSC

features to having a spatial pyramid structure.

Specifically, a three-layer spatial pyramid is constructed

as illustrated in Fig. 3. At the lth layer of the pyramid,

the image is divided into 22−l × 22−l cells. In this work,

l = 0 corresponds to the lowest layer in the pyramid;

while l = 2 corresponds to the highest layer. For each cell,

an HLNNSC feature is calculated from all image patches

whose centers are within the cell. The final Spatial Pyramid

structured HLNNSC (SP-HLNNSC) feature is obtained by

concatenating all HLNNSC features from all cells across

three layers. By doing so, the lower level of the pyramid

captures the locality information of the image patches and

is sensitive to subtle facial expression changes. The higher

level, on the contrary, reserves the advantages of the bag-
of-feature methods and is not sensitive to the misalignment

errors in face localization.

Fig. 3. An illustration of computing SP-HLNNSC features.

IV. EXPERIMENT

A. Image Databases and Experimental Setup

In order to demonstrate the effectiveness of the proposed

SP-HLNNSC based facial expression recognition method,

we have performed extensive validation studies on two well-

known facial expression databases. The first database is the

Cohn and Kanade’s DFAT-504 database [16], which consists

of more than 100 subjects and has been widely used for

evaluating facial expression recognition system. The results

on this database will be used to demonstrate the gener-

alization capability of the proposed framework on a large

population. The second database is the GEMEP-FERA2011

dataset [32], which has been used as the benchmark dataset

for the FERA2011 challenge [32]. The facial expressions

displayed in this database are more natural compared to the

Cohn-Kanade database with considerable head movements

involved. The results on the second database intend to

demonstrate the robustness under less controlled environment

and to facilitate a performance comparison with the state-

of-the-art facial expression recognition techniques. In this

work, the recognition performance is evaluated quantitatively

in terms of classification rate ( number of correctly recognized samples
total number of samples

).

B. Weakly Supervised Dictionary Construction

Rather than learning the NNSC dictionary directly from

the facial expression databases, i.e., the Cohn-Kanade

database and the GEMEP-FERA2011 dataset, we employ the

LFW database [15] for constructing the dictionary. This is

because these facial expression databases have a small size

in terms of subjects and expression categories. As a result, a

new dictionary needs to be learned given a new testing set in

order to capture the facial appearance variations in the unseen

subjects and/or unseen expression categories. In practice, the

testing images cannot be obtained in advance. Consequently,

the generalization capability is often compromised.

Inspired by the recent advances in weakly-supervised

learning ([42], [7], [21]), where unlabeled but relevant data

has been used for improving the performance of a classifier,

we would like to take advantage of the huge unlabeled data,

i.e., facial images without expression labels. In particular,

we use the LFW database to learn the NNSC dictionary.

The LFW database has nearly 14000 images from over 5000

subjects and contains significant variations in background,

demographics, face view angles, expressions, and illumina-

tions as well as partial occlusions.

Fig. 4. Visualization of learned basis vectors.

For preprocessing purpose, each image in the LFW

database has been funneled by image congealing [14] such

that the face regions across different images have been

aligned to remove the scale and positional variance. After

congealing, the face regions are then cropped to 130× 130.

In this work, we randomly extract 300 image patches (14×14
square) from each cropped facial image in the LFW database.

Hence, we have more than 4 million image patches for

dictionary learning. We adapt SPArse Modeling Software

(SPAMS) [24] to learn NNSC dictionary from these extracted



image patches. Some examples of learned basis vectors are

visualized in Fig. 4. We can see that the learned basis

vectors indeed capture basic patterns of the input images.

For example, if we look closer, we can find that some of

the basis vectors in the first row describe the major facial

components such as nose. This learned NNSC dictionary has

been employed in all experiments discussed below in spite

of the facial expression database used for testing.

C. Performance Evaluation on Cohn-Kanade Database

We first evaluate the proposed SP-HLNNSC based method

on the Cohn-Kanade database [16]. The images in Cohn-

Kanade database were collected from around 100 subjects

under a controlled environment without obvious head move-

ments. The expression categories covered in Cohn-Kanade

include neutral, anger, disgust, fear, happiness, sadness, and

surprise. Since each subject has only a few expressions

activated and labeled, we have 204 image sequences with

expression labels in total. For each image sequence, there

is only one expression label provided, which corresponds to

the last frame (the peak frame). Therefore, we select the last

three frames for training/testing purpose from each image

sequence. In addition, we also select one image without

any expression for each subject and use it as a neutral

expression. By doing so, we build an experimental dataset

named CK-DB with a total of 613 images. The one-versus-

all classification strategy is employed for this multiclass

classification problem. When we recognize an expression,

the positive samples are selected as the images with the

expression occurring; and the other images are used as the

negative samples.

For each image in the CK-DB, the face region is cropped

and normalized to 150 × 130 based on the eye positions

provided in the database. For each cropped facial image, we

randomly extract 2000 image patches, from which the SP-

HLNNSC feature is calculated using the NNSC dictionary

learned on the LFW database.

In order to evaluate the performance for generalization to

novel subjects, the CK-DB is divided into 8 subsets, where

the subjects in any two subsets are non-overlapped. For each

run, we use one subset for testing and the remaining 7 subsets

for training the classifiers. We will perform such 8 runs by

enumerating the subset used for testing; and the recognition

performance is computed as the average of the 8 runs. In

this experiment, the classification rate for each expression

is computed based on a per-image detection since we have

expression labels for each image in the CK-DB.

In this experiment, we intend to evaluate the effectiveness

of using the proposed SP-HLNNSC based method. Specifi-

cally, we would like to compare the recognition performance

of the proposed method with a set of baseline methods

including a) histograms of sparse coded features without

nonnegative constraints (HSC) computed from the whole

image, b) HNNSC features computed from the whole image,

and c) a spatial pyramid of HNNSC features (SP-HNNSC).

For each image in the CK-DB, we calculate different types

of features including the proposed SP-HLNNSC and the

TABLE I

PERFORMANCE COMPARISON ON THE CK-DB.

Expression HSC HNNSC SP-HNNSC SP-HLNNSC (Proposed)

Neutral 0.87 0.86 0.93 0.94
Anger 0.78 0.78 0.89 0.85
Disgust 0.77 0.88 0.95 0.94
Fear 0.75 0.88 0.93 0.94
Happiness 0.88 0.93 0.97 0.98
Sadness 0.81 0.73 0.77 0.95
Surprise 0.9 0.94 0.9 0.99
AVG 0.82 0.86 0.91 0.94

features listed above. For all methods in comparison, we

use AdaBoost classifiers for classification given a type of

features. For a fair comparison, we ensure all the methods

are compared under the same condition: using the same data

for training/testing.

In Table I, we compare the recognition performance using

the proposed method and the baseline methods for the 7

emotion categories in terms of classification rate. From

Table I, we can find that the proposed SP-HLNNSC based

method achieves the best recognition performance among

all the methods in comparison in terms of the average

classification rate of the 7 emotion categories (0.94). Specif-

ically, by using the nonnegative constraints (HNNSC), the

average classification rate was improved by 0.04 compared

to the HSC based method. The pyramid-like structure (SP-

HNNSC) further improved the average classification rate by

0.05 compared to the HNNSC based method. Finally, the

proposed SP-HLNNSC based method outperformed the SP-

HNNSC based method by 0.03. This clearly demonstrates

that the log-transformed sparse features are more effective

to describe the subtle facial appearance changes.

Furthermore, we also compare the proposed SP-HLNNSC

based method with other state-of-the-art NNSC based meth-

ods that were evaluated on the Cohn-Kanade database in-

cluding PGKNMF method by Zafeiriou and Petrou [39] and

GPSNMF method by Zhi et al [46]. In this work, we use the

experimental results reported in their papers. The PGKNMF

method [39] and the GPSNMF method [46] were evaluated

on the Cohn-Kanade database using a subset of 13 subjects

and 30 subjects, respectively. In contrast, we use all 82

subjects that have at least one expression labeled.

Table II shows the performance comparison in terms of

average classification rate for 6 emotion categories (anger,

disgust, fear, happiness, sadness, and surprise). The proposed

SP-HLNNSC based approach outperformed the PGKNMF

method significantly by 0.1. Although the average classifi-

cation rate of the proposed method is almost the same as that

of GPSNMF method, the GPSNMF method was evaluated in

a relative easier experimental setup, where the same image

sequence has been divided into training and testing sets.

D. Performance Evaluation on GEMEP-FERA2011 Dataset

It is more desirable to recognize facial expressions when

the subjects express their expressions naturally with free

head motions. This holds true in the database of GEMEP-

FERA2011 [32], where subject sometimes undergoes large



TABLE II

PERFORMANCE COMPARISON ON THE COHN-KANADE DATABASE IN

TERMS OF AVERAGE CLASSIFICATION RATE FOR 6 EMOTIONS.

PGKNMF [39] GPSNMF [46] SP-HLNNSC (Proposed)

0.842 0.943 0.941

TABLE III

RECOGNITION PERFORMANCE ON GEMEP-FERA2011 DATASET [32].

Expression Person-Independent Person-Specific Overall
Anger 0.643 0.846 0.741
Fear 0.333 1.00 0.600
Joy 1.00 1.00 1.00
Relief 0.688 0.900 0.769
Sadness 0.667 1.00 0.800
AVG 0.666 0.949 0.782

head movements. In GEMEP-FERA2011 database, videos

are collected from 10 subjects and are divided into two

groups: one is the training set and the other one is the testing

set. Each video has a single expression label available to the

users and thus every frame in the same video shares the

same expression label. There are 5 expression categories in

the database, i.e., anger, fear, joy, relief and sadness. The

training set consists of 7 subjects with 155 videos. The

testing set consists of 6 subjects with 134 videos, which

cover the same expression categories as the training set. The

expression labels for the testing set are blind to the users for

a fair comparison. Half of the subjects in the testing set are

not present in the training set.

For GEMEP-FERA2011 database, we use an eye detector

to detect the positions of the eyes [33], based on which

each frame of the training/testing videos is preprocessed

following the same way as used for the CK-DB. Then,

the SP-HLNNSC feature for each frame of the videos is

calculated from 2000 random sampled image patches and

used for facial expression recognition.

Similar to the experiments on the CK-DB, we use a

one-versus-all classification strategy and train an AdaBoost

classifier for each expression category. For training purpose,

the positive samples of an expression are selected as all the

frames of the videos that have the target expression; while all

the frames in the remaining videos are used as the negative

samples. During the testing process, we first estimate the

expression label for each frame of a testing video. Then, a

majority voting is utilized to obtain the expression label for

each testing video.

The per-video recognition performance of the proposed

SP-HLNNSC method is reported in Table III in terms of

classification rate. In Table III, the performance of person-
specific test, person-independent test, and overall test are

reported. In the person-independent test, the test subjects are

not present in the training set; while in the person-dependent
test, the test subjects appear in the training set also. The

overall test uses all testing videos.

We further compare the performance of the proposed

method with other published results in FERA2011 Challenge

in Table IV. We can see that our proposed method is ranked

TABLE IV

PERFORMANCE COMPARISON ON GEMEP-FERA2011 DATABASE IN

TERMS OF AVERAGE CLASSIFICATION RATE [32].

TEAM Person-Independent Person-Specific Overall

UC Riverside [37] 0.752 0.962 0.838
UIUC-UMC [30] 0.655 1.00 0.798
Proposed method 0.666 0.949 0.782
KIT [8] 0.658 0.944 0.773
UCSD-CERT [20] 0.714 0.837 0.761
UCLIC [25] 0.609 0.837 0.700
U. Montreal [6] 0.579 0.870 0.700
Queensland Univ. of Tech. [4] 0.624 0.554 0.600
Baseline [32] 0.440 0.730 0.560
MIT-Cambridge [1] 0.448 0.433 0.440

at the 3rd place for person-independent, person-specific, and

overall tests. Note that the result of the person-specific test

is much higher than that of the person-independent test. It

is because the GEMEP-FERA2011 dataset contains only 10

subjects, among which only 7 subjects appear in the training

set. This observation implies that the expression recognition

for a registered user is more reliable and accurate and it

remains challenging to generalize a trained system to unseen

users.

Although the performance of the proposed method is lower

than [37] and [30], our method is much more easier and

direct to implement. Both [37] and [30] need to empirically

choose and tune specific human designed features such as

SIFT, LBP, and LPQ employed individually or in a combi-

nation, while our work automatically learns and designs the

features in an unsupervised way. In addition, the proposed

method does not rely on motion information as [30], and

thus is particularly suitable for expression recognition from

a single image.

V. CONCLUSION AND FUTURE WORK

Facial expression recognition is challenging because of

subtle and complex facial deformations, and changes in

view point and illumination. It is of extreme importance to

develop image features that are capable of capturing subtle

facial appearance changes caused by facial expressions. In

this paper, we propose a novel image representation by

exploiting the statistics of sparse coded image features.

Specifically, we first learn the NNSC dictionary from a large

number of facial images without expression labels. Then, the

histograms of NNSC coded image features are employed

to represent image patches extracted from facial images.

Logarithmic transformation is further applied on each NNSC

coded feature to enhance its discriminative ability. In order

to characterize the spatial relationships among the features,

a pyramid-like structure formed by the proposed HLNNSC

features is employed.

Extensive experiments on two well-known facial ex-

pression databases (Cohn-Kanade database and GEMEP-

FERA2011 dataset) demonstrate that our proposed SP-

HLNNSC feature outperforms the other sparse coding based

image features in comparison. Furthermore, the proposed

method also shows promise for expression recognition under



less controlled environment with significant head move-

ments. Since the proposed SP-HLNNSC feature does not

limit to the application of facial expression recognition, we

plan to extend this work to other face-related classification

problems such as biometrics and recognition of micro-

expressions.
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