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Abstract
A training process for facial expression recognition is

usually performed sequentially in three individual stages:
feature learning, feature selection, and classifier construc-
tion. Extensive empirical studies are needed to search for
an optimal combination of feature representation, feature
set, and classifier to achieve good recognition performance.

This paper presents a novel Boosted Deep Belief Net-
work (BDBN) for performing the three training stages it-
eratively in a unified loopy framework. Through the pro-
posed BDBN framework, a set of features, which is effective
to characterize expression-related facial appearance/shape
changes, can be learned and selected to form a boosted
strong classifier in a statistical way. As learning contin-
ues, the strong classifier is improved iteratively and more
importantly, the discriminative capabilities of selected fea-
tures are strengthened as well according to their relative
importance to the strong classifier via a joint fine-tune pro-
cess in the BDBN framework. Extensive experiments on two
public databases showed that the BDBN framework yielded
dramatic improvements in facial expression analysis.

1. Introduction
Facial behavior is one of the most important cues for

sensing human emotion and intention in people. Driven

by recent advances in human-centered computing, an au-

tomatic system for accurate and reliable facial expres-

sion analysis has emerging applications such as interactive

games, online/remote education, entertainment, and intelli-

gent transportation systems.

Facial expression analysis usually employs a three-stage

training consisting of feature learning, feature selection,

and classifier construction. First, features that capture ex-

pression related facial appearance/geometry changes are

extracted from images or video sequences. These fea-

tures can be either hand-designed [32, 33, 34, 25, 1, 27,

28, 26, 22, 9, 4, 10, 13] or learned from training im-

ages [6, 29, 15, 16, 36, 2, 35, 30]. Then, a subset of the

extracted features, which is the most effective to distinguish
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one expression from the others, is selected to facilitate an

efficient classification and enhance the generalization capa-

bility [1, 27]. Finally, a classifier is constructed given the

extracted feature set for each target facial expression.

In the current practice of facial expression analysis, these

three stages are often performed sequentially and individu-

ally. To achieve satisfactory recognition performance, ex-

tensive empirical studies are needed to search for an opti-

mal combination of feature representation, feature set, and

classifier. For a new data set, this nontrivial process usually

would be repeated. Although each stage is optimized given

the results from the previous stage, it lacks a feedback from

the latter one. Recently, it has been demonstrated that ex-

pression recognition can benefit from performing two stages

together. In one example, given predefined feature rep-

resentations such as Gabor features, feature selection and

classifier construction were conducted iteratively in training

a boosted classifier, where a feature was selected accord-

ing to the current classification error and linearly combined

with previously selected features to form a strong classi-

fier [1]. In another example, feature learning and classifier
construction were performed back and forth in a Deep Be-

lief Network (DBN) [20, 21], where a hierarchical feature

representation and a logistic regression function for classi-

fication were learned alternatively.

Motivated by this, we propose a novel Boosted Deep

Belief Network (BDBN) to perform the three stages in a

unified loopy framework. Through the proposed BDBN

framework, a set of features, which is effective to character-

ize expression-related facial appearance/shape changes and

thus, highly discriminative for classification, can be learned

and selected to form a boosted strong classifier in a sta-

tistical way. Specifically, we develop and employ a novel

objective function, which accounts for recognition perfor-

mance of both the strong classifier and weak classifiers (fea-

tures), to drive a feature fine-tuning process. As learning

continues, the strong classifier is improved and more im-

portantly, the discriminative capabilities of selected features

are strengthened according to their relative importance to

the strong classifier, thanks to a joint fine-tune process in
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the BDBN framework. As shown in Fig. 1, recognition per-

formance of the strong classifier increases with the learning

going on, and so does each selected weak classifier, i.e., a

patch-based feature. In addition, much fewer features are

employed at the end of training because of the improved

discriminative capability.

Figure 1. A boosted deep learning framework for facial expression recog-

nition. For image patches extracted at a specific location, an initial feature

representation is learned through a BU-UFL process. Then, a subset of

weak learners (features enclosed in the red rectangle) is selected by boost-

ing and fine-tuned jointly in a BTD-SFS process. The two processes run

alternatively until converge. With the learning going on, the discrimina-

tive ability of the strong classifier and the weak learners increases (see the

figure on the left and details can be found in Fig. 5). Best viewed in color.

As shown in Fig. 1, the BDBN framework consists of

two interconnected learning processes: a bottom-up un-
supervised feature learning (BU-UFL) process that learns

hierarchical feature representations given input data and

a boosted top-down supervised feature strengthen (BTD-

SFS) process that refines the features jointly in a supervised

manner. At the beginning, each training image is divided

into a set of partially overlapped image patches. Next, for

each set of patches extracted at the same location, an initial

feature representation is learned individually in a BU-UFL

process. Then, a subset of features (patches) with higher

discriminative power is selected and combined to form a

strong classifier in a supervised manner by boosting. The

classification error from the strong classifier and from the

weak classifiers (features) will be utilized and propagated

backward to initiate a BTD-SFS process, where only the

features selected previously would be fine-tuned jointly ac-

cording to their contributions to minimizing an objective

function. The BU-UFL and the BTD-SFS processes are it-

erated alternatively in a loop until converge.

Our proposed BDBN-based facial expression recogni-

tion framework has three major contributions.

• First, to the best of our knowledge, it is the first time to

systematically unify feature learning, feature selection,

and classifier construction in one framework.

• Second, unlike the traditional DBNs that employed the

whole facial region as input [24, 20, 21], the proposed

work facilitates a part-based representation, which is

especially suitable for facial expression analysis.

• Third, we propose a novel discriminative deep learn-

ing framework, where the boosting technique and mul-

tiple DBNs are integrated through a novel objective

function. Furthermore, the features are jointly fine-

tuned such that the discriminative capability of each

feature is strengthened according to its contribution to

the strong classifier.

Extensive experiments on the Extended Cohn-Kanade

(CK+) database [11, 17] and JAFFE database [18] showed

that the BDBN framework yielded dramatic improvements

in facial expression recognition compared to the state-of-

the-art techniques. In addition, due to the improvement of

the discriminative ability in selected features as iteration

goes, the learned strong classifier only employed a few fea-

tures, which demonstrated the effectiveness of feature learn-

ing/strengthen by using the proposed framework.

2. Previous Work
Extensive efforts have been devoted to recognize facial

expressions [19, 31]. Facial expression recognition usually

consists of two major procedures: offline training and on-

line recognition. Generally, the system training includes

three stages, i.e., feature learning, feature selection, and

classifier construction.

In the first stage, features are extracted from either

static images or video data to characterize facial appear-

ance/geometry changes caused by activation of a target ex-

pression. Most of the existing work utilizes various human-

crafted features including Gabor wavelet coefficients [33,

32, 25, 1, 27], Haar features [27, 28], histograms of Local

Binary Patterns (LBP) [34, 26, 22, 10], Histograms of Ori-

ented Gradients (HOG) [9, 4], scale-invariant feature trans-

form (SIFT) descriptors [9], and 3D shape parameters [13].

Recently, unsupervised feature learning approaches es-

pecially those based on sparse-coding [6, 29, 15, 16, 36, 2,

35, 30] have been employed to extract underlying “edge-

like” features from facial images and have shown promise

in facial expression analysis. To become more adaptable to

the real world that consists of combination of edges, deep

learning networks have been employed for the applications

of facial expression recognition [20, 21]. Since the whole

face region is employed as input [20, 21], every part of the

face is treated and fine-tuned equally no matter if it is rele-

vant to the target facial expression.

As suggested by the psychological studies, the informa-

tion extracted around nose, eyes, and mouth is more criti-

cal for facial expression analysis [3]. Furthermore, differ-

ent sets of facial muscles may be involved in different fa-

cial expressions. Therefore, in the second stage, a subset

of features, which is the most effective to distinguish one

expression from the others, is often selected to improve the

recognition performance [1, 27, 36]. For example, Zhong

et al. [36] developed a two-stage multi-task sparse learning

model to find common and specific facial patches, discrim-



inative to all expression categories and a target expression,

respectively.

In the final stage, the extracted feature set is fed into a

pre-specified classifier to train a facial expression recog-

nizer for a target expression.

In summary, most of the aforementioned approaches per-

form the three training stages sequentially and individually,

except for a few combining two stages [1, 27, 36, 20, 21].

Although each stage is optimized given the results from the

previous one, it lacks a feedback from the latter stage. In ad-

dition, exhaustive search is needed to find an optimal com-

bination of feature representation, feature set, and classifier

given a specific dataset. In contrast, our work aims to sys-

tematically integrate the three stages in a loopy framework

to yield an optimal solution consisting of a concise yet pow-

erful feature set and a strong classifier to distinguish one

facial expression from the others.

3. Boosted Deep Belief Network for Facial Ex-
pression Recognition

3.1. Overview of the BDBN Framework

Figure 2. A BDBN consists of multiple DBNs, each of which is composed

of multiple layers and intends to learn a hierarchical feature representation

corresponding to image patches extracted at a specific location. Only the

DBNs enclosed in the red rectangle corresponding to the patches selected

by boosting will be fine-tuned jointly.

In this work, we develop a BDBN framework to perform

feature learning, feature selection, and classifier construc-

tion in a loopy process. As shown in Fig. 2, the BDBN

framework consists of a group of DBN structures, each of

which is a multi-layer graphical model. Given a training

set of image patches extracted at the same position, each

DBN is utilized to learn a hierarchical feature representa-

tion. More importantly, these DBNs are connected through

a boosted classifier, i.e., an AdaBoost-like classifier in this

work, and fine-tuned jointly driven by a single objective

function so that the features extracted at different locations

are selected and strengthened jointly according to their rel-

ative importance to facial expression recognition.

The BDBN learning consists of two interconnected

learning processes: a BU-UFL process and a BTD-SFS pro-

cess. A BU-UFL process starts from the lowest layer and

outputs in the highest layer. The feature computed in the

highest layer of each DBN is employed as a weak learner

to construct an AdaBoost strong classifier. The most dis-

criminative features are selected by AdaBoost with weights

proportional to their classification errors. Then, the classi-

fication errors including the overall error produced by the

boosted strong classifier and the individual errors produced

by the weak learners are employed to drive a BTD-SFS pro-

cess, where the classification errors are back propagated to

the lower levels of the DBNs. Through the BTD-SFS pro-

cess, the features learned previously are fine-tuned jointly

to minimize the classification errors on the training set. The

BDBN learning repeats until it converges. In the subse-

quent discussion, we will first introduce the construction

and initialization of the BDBN framework, and then present

a novel BTD-SFS process for joint feature fine-tuning.

3.2. BDBN Framework Construction and Initializa-
tion based on a Group of DBNs

As shown in Fig. 2, we employ a DBN as the building

block for constructing the BDBN framework. Rather than

employing one DBN to learn features from the whole facial

region, we divide the facial region into partially overlapped

patches, each of which corresponds to a DBN, respectively.

The patch-based feature representation is especially suitable

for facial expression analysis as validated by the previous

studies [36]. Furthermore, it facilitates a feature selection

process that chooses the patches containing the most critical

information of a target expression.

DBN is a hierarchical graphical model composed of lay-

ers of nodes. The nodes in the higher layer learn the statis-

tical dependencies among the nodes in adjacent lower layer.

And thus, the higher layer intends to discover more com-

plex patterns of the input signal. Specifically, we use a

DBN composed of one visual layer (the lowest layer) and

five hidden layers to learn a hierarchical feature representa-

tion given training data extracted at the same patch location.

The conditional dependencies between each pair of con-

nected layers, except the top two layers, are modeled by

a Restricted Boltzmann Machine (RBM) [8]. The RBM

is a two-layer undirected graphical model composed of a

visible-unit layer and a hidden-unit layer. Hence, for an

L+1-layer DBN, the joint distribution of the visual layer

(the lowest layer) and the upper L hidden layers can be

modeled as

Prob(H0,H1,· · ·,HL
)=

L−2∏

l=0

Prob(Hl|Hl+1)Prob(HL−1
,HL

) (1)

where Hl denotes a set of random variables in the lth

layer; and H0 is actually the visual layer. Specifically,

Prob(Hl+1|Hl) and Prob(Hl|Hl+1) for l ∈ [0, L− 2] can be

calculated as Eq. 2 and Eq. 3, respectively.

Prob(Hl+1|Hl) =
1

1 + exp−(Wl,l+1Hl + bl+1
h )

(2)



Prob(Hl|Hl+1) =
1

1 + exp− [
(Wl,l+1)T Hl+1 + bl

v

] (3)

where Wl,l+1 denotes the weight matrix between the lth

and the (l + 1)
th

layers; bl+1
h represents the hidden bias

vector at the (l + 1)
th

layer; and bl
v represents the visual

bias vector at the lth layer, respectively.

The output of DBN at the highest layer (HL), which

represents the probability of a target expression being ac-

tivated, can be estimated as

HL = WL−1,LHL−1
(4)

where WL−1,L denotes the weight matrix between the top

two layers.

DBN learning is to estimate Wl,l+1, bl+1
h , and blv for

l ∈ [0, L− 2] as well as WL−1,L, given training data. At

the beginning, an initial estimate of the parameters (Wl,l+1,

bl+1
h , and blv for l ∈ [0, L− 2]) can be computed using

an unsupervised bottom-up learning strategy [7]. Then,

through a bottom-up feed forward process, we can compute

HL−1 given the input and the parameters (WL−2,L−1, bL−1
h ,

and bL−2
v ). Given HL−1, i.e., the input from the (L− 1)

th

layer, and the expression labels, the weight matrix WL−1,L

is initialized as the projection matrix of Linear Discriminant

Analysis (LDA) in this work so that the output of DBN, i.e.,

HL, is a discriminative feature for facial expression recog-

nition. Note that, this bottom-up learning process is per-

formed for each patch location individually to learn an ini-

tial feature representation.

3.3. Joint Feature Fine-tuning in a BTD-SFS
After constructing a BDBN framework with initialized

DBNs, each image patch can be transformed into a hier-

archical feature representation. Then, we need to refine

the features to strengthen their recognition ability by fine-

tuning the DBN parameters (W, bh, and bv). This fine-

tuning process is conducted in a top-down manner by up-

dating the weight matrix WL−1,L first. In this work, we

develop a novel BTD-SFS process, where the fine-tuning
for all DBNs is performed jointly.

As discussed above, a BDBN framework consists of

multiple DBNs. The output of each DBN at its highest layer

(HL) can be used as a weak classifier for constructing an

AdaBoost classifier. Therefore, for an image set containing

NI samples, the overall predication error is:

εstrong=

NI∑
i=1

βi

[
1

1+exp(−∑M
j=1 αjsgn(WL−1,L

j HL−1
i,j −Tj))

−Ei

]2

(5)

where Ei ∈ {0, 1} is the expression label of the ith im-

age; WL−1,L
j HL−1

i,j =HL
i,j is the DBN output for the jth se-

lected image patch in the ith image; α and T are weights

and thresholds of M selected weak classifiers in the Ad-

aBoost classifier. sgn(·) is a sign function defined as:

sgn(WL−1,L

j HL−1

i,j − Tj)=

{
1 if WL−1,L

j HL−1

i,j >=Tj

−1 otherwise
(6)

To facilitate the calculation of partial derivative of the

sgn(·) function, we compute

sgn(WL−1,L

j HL−1

i,j − Tj)≈
WL−1,L

j HL−1

i,j − Tj√
(WL−1,L

j HL−1

i,j − Tj)2 + η2
(7)

where η is a constant to control the slope of sgn(·) function.

Since the number of negative samples (i.e., the images

without the target expression activated) is much higher than

that of positive samples (i.e., the images with the target ex-

pression), a weighting coefficient βi is introduced to bal-

ance the contributions of the negative samples and the pos-

itive samples in Eq. 5.

Furthermore, unlike the traditional AdaBoost classifier,

which only considers the overall classification error of the

strong classifier, we propose a novel objective function that

accounts for both the overall classification error εstrong and

individual classification errors from all selected weak learn-

ers εweak as follows:
ε = λεstrong + εweak, (8)

where

εweak=
M∑
j=1

αj

NI∑
i=1

βi

⎡
⎣ sgn(WL−1,L

j HL−1
i,j − Tj)+ 1

2
−Ei

⎤
⎦
2

(9)

and λ is a weight balancing the two terms 1.

Hence, for the kth selected feature (image patch), the

weight matrix between the two top layers (WL−1,L
k ) can be

updated by minimizing Eq. 8. In this work, we perform a

line search method to search for a descent direction as:

∂ε

∂WL−1,L
k

=− 2λ

NI∑
i=1

βi

[
1 − Ei(1 + Ai)

(1 + Ai)3

]
∂Ai

∂WL−1,L
k

+ 2αk

NI∑
i=1

βi

(
Bik + 1

2
− Ei

)
∂Bik

∂WL−1,L
k

,

(10)

where
∂Ai

∂WL−1,L

k

= −Aiαk
∂Bi,k

∂WL−1,L
k

,
∂Bi,k

∂WL−1,L

k

=
η2HL−1

i,k

(C2
i,k + η2)

3
2

,

Ai = exp

⎛
⎝−

M∑
j=1

αjBi,j

⎞
⎠ , Bi,j =

Ci,j√
C2

i,j + η2
,

and Ci,j = WL−1,L

j HL−1

i,j − Tj .
(11)

Then, the weight matrix WL−1,L
k for the kth selected

feature is updated by W
L−1,L

k ← W
L−1,L

k − γ ∂ε

∂WL−1,L

k

, where

γ is a learning rate 2.

After that, the parameters of the lower layers (Wl,l+1,

blv , and bl+1
h for l ∈ [0, L − 2]) are updated based on a

standard back-propagation algorithm [8]. Updating param-

eters of the lower layers will be affected by boosting in two

ways: 1) by the weighted errors estimated in boosting, and

2) by the weight matrix WL−1,L updated in the previous

1In our experiment, λ was set to 1.0 empirically.
2γ was initially set to 1.0 and decreased during learning in our exper-

iments.



Algorithm 1 Iterative feature learning, feature selection, and

classifier construction through a BDBN

Input: NI training images with the corresponding expression labels E,

and the number of hidden layers of the DBN L
Output: the DBN parameters (weight matrices Wl,l+1 for l ∈ [0, L−

1], visual bias bl
v and hidden bias bl+1

h for l ∈ [0, L − 2]) and

the AdaBoost parameters (weights α and thresholds T for M weak

classifiers)

Preprocessing: Extract NP patches with the patch size u×u for each

input image and form a set of NI × NP patches P
Initialization:

for j = 1 to NP do
Compute Wl,l+1

j , bl
v,j , and bl+1

h,j for l ∈ [0, L − 2];

Calculate HL−1
j by contrastive divergence learning [7];

Initialize WL−1,L
j

end for
repeat

for i = 1 to NI do
for j = 1 to NP do

Calculate HL

i,j = WL−1,L

j HL−1

i,j ;

end for
Form HL

i = [HL

i,1, · · · , HL

i,N
P

] for the ith image;

end for
Given HL

for NI images, train an AdaBoost classifier to estimate its

parameters α (weights) and T (thresholds) for M weak classifiers

for k = 1 to M do
Calculate ∂ε

∂WL−1,L

k

based on Eq. 10

Update WL−1,L

k ← WL−1,L

k −γ ∂ε

∂WL−1,L

k

; {γ is a learning rate}

Update the parameters Wl,l+1
k , bl

v,k, and bl+1
h,k for l ∈ [0, L−

2] based on a standard back-propagation algorithm [8];

Update HL−1
k .

end for
until Converge

iteration. Note that, only the weight matrices of the se-

lected M features would be updated, which will decrease

the computation cost significantly. Then, the bottom-up and

the top-down learning processes will alternatively run un-

til converge. An algorithm for feature learning/strengthen,

feature selection, and classifier construction through the

BDBN framework is summarized in Algorithm 1.

4. Experimental Results
4.1. Image Database and Experimental Setup

To demonstrate the effectiveness of the proposed BDBN

framework, we have performed extensive experiments

on two well-known facial expression databases: Ex-

tended Cohn-Kanade (CK+) database [11, 17] and JAFFE

database [18], which have been widely used for evaluating

facial expression recognition systems.

For preprocessing purpose, the face regions across dif-

ferent facial images were aligned given the detected eye po-

sitions to remove the scale and positional variance and then

cropped to 167×137. Then 80 partially overlapped image

patches with a size of 24×24 were extracted from each

cropped facial image. For each DBN module in the BDBN

framework, we employed five hidden layers plus one visual

layer following the implementation of [8]3. The number of

nodes in each hidden layer is 1, 1000, 1000, 500, and 500,

from the highest layer to the lowest one respectively; and

the number of nodes in the visual layer is 576, which is con-

sistent with the image patch dimension. This preprocessing

strategy has been adopted in both data sets we employed.

4.2. Experiments on the CK+ Database
The CK+ database [11, 17] contains 327 expression-

labeled image sequences, each of which has one of 7 ex-

pressions, i.e., anger, contempt, disgust, fear, happiness,

sadness, and surprise activated. For each image sequence,

only the last frame (the peak frame) is provided with an

expression label. To collect more image samples from

the database, we selected the last three frames for train-

ing/testing purpose from each image sequence. In addition,

we also collected the first frame from each of the 327 la-

beled sequences for “neutral” expression. This way, an ex-

perimental data set named CK-DB with a total of 1308 im-

ages is built. The CK-DB was divided into 8 subsets, where

the subjects in any two of subsets are not overlapped. For

each run, 7 subsets were employed for training and the re-

maining one subset for testing. We performed such 8 runs

by enumerating the subset used for testing; and the recog-

nition performance was computed as the average of the 8

runs. In addition, an one-versus-all classification strategy

was adopted to train a binary classifier for each expression.

4.2.1 Performance Evaluation on the CK-DB
We first compared the proposed BDBN framework with

three baseline feature learning methods based on traditional

DBNs. The first method, denoted as GDBN, takes the whole

facial image as input to a single DBN. Each facial image is

further scaled to a size of 24×24 to reduce the computation

complexity4. The comparison between BDBN and GDBN is

used to demonstrate the superiority of the patch-based rep-

resentation over the holistic feature representation.

The second and third methods employed the exact same

input as BDBN (i.e., 80 image patches) and 80 DBNs,

each of which corresponds to a patch location. The sec-

ond method, denoted as Ada+BUs, learned the features by

only bottom-up feature learning; while the third method,

denoted as Ada+IDBNs, employed both bottom-up and

top-down feature learning in each DBN individually (ver-

sus a joint fine-tuning in the BDBN). For both Ada+BUs
and Ada+IDBNs, the outputs from the highest layers of

all 80 DBNs were employed as features to train an Ad-

aBoost classifier. The comparison between BDBN and

3We add one more hidden layer since introduction of new layers in the

deep structure generally can improve the model [7].
4We followed the implementation in [8] for GDBN, where 24 × 24

whole facial regions are used as input. The recognition performance on

48 × 48 is similar to that on 24 × 24 but with a much higher computa-

tional cost.



Ada+BUs/Ada+IDBNs intends to demonstrate the effec-

tiveness of the joint feature learning, feature selection, and

classifier construction.

For all baseline methods, we employed the traditional

DBN implementation in [8] with a five-hidden-layer struc-

ture, where a two-node soft-max output layer (the high-

est layer) was used. Thus, the numbers of nodes are

2, 1000, 1000, 500, 500, from the highest hidden layer

to the lowest one, respectively; and the numbers of nodes in

the visual layer is 24 × 24 = 576.

As shown in Fig. 3, the proposed BDBN framework out-

performed all baseline methods impressively in terms of

the average classification rate (0.967), the average hit rate

(0.891), the average false positive rate (0.025) and the aver-

age F1 score (0.834) of the 6 basic expressions, i.e., anger,

disgust, fear, happiness, sadness, surprise 5.

0.7
0.8
0.9

Classification Rate 

0

0.5

1
Hit Rate 

0
0.1
0.2

False Positive Rate

ang dis fear hap sad sur

0.5

1
F1 Score

BDBN GDBN Ada+BUs Ada+IDBNs

Figure 3. From top to bottom, performance comparison on the CK-DB in

terms of a) classification rate, b) hit rate, c) false positive rate, and d) F1

score for 6 basic expressions. Best viewed in color.

Furthermore, we compared the proposed BDBN method

with the state-of-the-art methods evaluated on CK+ or the

original Cohn-Kanade database [11] 6 including methods

employing LBP features [36, 23] and Gabor wavelet fea-

tures [1]. To make a fair comparison, we only compared

with the methods with a similar experimental setting: the

last frame [1] or the last 3 frames [36, 23] in each image

sequence were employed for training/testing. Among the

compared methods, Common and Specific Patches (CSPL)

method [36] employed multi-task learning; and AdaGa-

bor [1] employed an AdaBoost, for feature selection, re-

spectively. For these methods in comparison, we used their

experimental results reported in their papers. As shown in

Table 1, BDBN framework outperformed all the methods in

comparison [1, 36, 23]. This demonstrated that the features

5We did not recognize the “contempt” and “neutral” for a fair com-

parison with the state-of-the-art methods evaluated on the original Cohn-

Kanade database [11].
6Cohn-Kanade database [11] is an early version of CK+ and contains a

subset of CK+ data (i.e., 320 image sequences with expression labels [23]).

learned and selected through BDBN contain more discrim-

inative information for facial expression recognition.

Table 1. Performance comparison on the CK+ database in terms of aver-

age classification rate for 6 expressions. LOSO: leave-one-subject-out.

Methods CSPL [36] AdaGabor [1] LBPSVM [23] BDBN

Validation Setting 10-Fold LOSO 10-Fold 8-Fold

Performance 0.899 0.933 0.951 0.967

4.2.2 Analysis of Patches Selection Results on the CK+
Database

We are curious about what information each selected patch

provides. For each expression, patches selected by the fi-

nal strong classifiers through BDBN learning are marked by

boxes in Fig. 4. In addition, we only show those patches that

were selected more frequently in the 8-fold experiments.

Specifically, patches enclosed in red boxes were selected

in all the 8 runs across different subjects. These patches,

we believe, contain the most discriminative information to

recognize the corresponding expression. Those patches en-

closed in blue boxes were selected in more than 4 runs.

Most of the selected patches, especially those enclosed

in red boxes, are located around lip, eye, nose, and eye-

brow, which coincides with the psychological studies [3].

It is also interesting that the patches selected for the ex-

pressions are closely related to a set of facial Action Units

(AUs) [5], which can be used to describe the corresponding

expression. For example, as shown in Fig. 4, the patches

selected for recognizing the sadness expression are either

located around the lip, which is closely related with AU 15

(Lip Corner Depressor), or around the eye corners and eye-

brows, which are related to AU 4 (Brow Lowerer) and AU 1

(Inner Brow Raiser), respectively. The combination of AU

1, AU 4 and AU 15 describes the sadness expression [17].

Similar results can be found in other expressions.

(a) Ang (b) Dis (c) Fea (d) Hap (e) Sad (f) Sur

Figure 4. An analysis of the selected features for the six basic expressions

in CK+ database. Red color means selection with the highest frequency,

i.e., the feature was selected in all 8 runs; while blue color stands for rela-

tively lower selection frequency, i.e., the feature was selected in more than

4 runs. Best viewed in color.

Another interesting discovery is that the number of

selected patches decreases as BDBN learning continues.

Starting from dozens patches selected in the first iteration,

fewer and fewer patches are chosen. Finally, a small set

of features (usually less than 7) was employed in the fi-

nal strong classifier. Furthermore, the discriminative pow-

ers of the selected features were strengthened drastically.

As shown in Fig. 5, an 80-dimensional vector is employed

to store the individual recognition rates of all features



(patches), where an “X” means the feature is not selected.

We can find that most of the less expression-related features

(e.g., patches around hair and neck) were deselected with

learning going on; and individual recognition rates of the

selected features (patches), which are shown as the num-

bers in the corresponding vector, increase as iteration goes.

Figure 5. Recognition rate of the strong classifier increases with a de-

crease in the number of selected patches as iteration goes. More impor-

tantly, individual recognition rates for the selected features (patches) in-

crease as well. An 80-dimensional vector is employed to store the indi-

vidual recognition rates of all features (patches), where an “X” means the

feature is not selected. Best viewed in color.

4.2.3 Computational Complexity
Our expression recognition system consists of an offline

training phase and an online recognition phase. The offline

training is performed in two steps: an initialization process

for constructing 80 DBNs and a joint feature learning pro-

cess via the BDBN with the BU-UFL and the BTD-SFS

running alternatively. It took about 8 days to complete the

overall training for 6 expressions in an 8-fold experimental

setup on a 6-core 2.4GHZ PC using Matlab implementa-

tion. Note that BDBN training became more and more ef-

ficient as the learning continued because the number of se-

lected patches kept decreasing until converge. In our exper-

iments, less than 7 weak classifiers (selected patches) were

employed in most of the final strong classifiers. For the on-

line recognition, the average running time for each image

is nearly 30ms × number of weak classifiers using Matlab

implementation. In addition, the online recognition can be

performed in real-time using a parallel computing strategy.

4.3. Experiments on the JAFFE Database
JAFFE database [18] consists of 213 images from 10

Japanese female subjects. Each subject has 3 or 4 examples

of each of the six basic expressions and one sample of a

neutral expression. The experimental results on the JAFFE

database are used to demonstrate the cross-database gener-

alization ability of the proposed method.

4.3.1 Cross-database Validation
To evaluate the generalization ability, we performed a cross-

database validation, i.e., we trained the BDBN framework

on the CK+ database and tested its performance on the

JAFFE database. It is well received that the generalization

across database is usually low. Shan et al [23] trained se-

lected LBP features using SVMs on Cohn-Kanade database

and tested the trained system on the JAFFE database, and

obtained a classification rate about 41% for 7 expressions

(6 basis expressions and neutral). From Table 2, we can find

that the performance of BDBN is much higher than [23],

which demonstrates that the features learned by BDBN cap-

ture the most critical expression-related information that

can be generalized across different data sets.

Table 2. Cross-database validation, trained on CK+ database and tested

on the JAFFE database, in terms of average classification rate for 7 ex-

pressions (6 basis expressions and neutral). In [23], LBP features were

employed and fed into SVM with three different kernels, i.e., linear, poly-

nomial, RBF, respectively.

Ada+SVM(Linear) [23] Ada+SVM(Poly) [23] Ada+SVM(RBF) [23] BDBN

0.404 0.404 0.413 0.680

Table 3. Performance comparison on the JAFFE database in terms of av-

erage classification rate for 7 expressions (6 basis expressions and neutral).

BDBNJ was trained on images only from JAFFE; while BDBNJ+C was

trained on CK+ first and refined using the images in JAFFE.

SLLE [14] SFRCS [12] Ada+SVM(RBF) [23] BDBNJ BDBNJ+C

0.868 0.860 0.810 0.918 0.930

4.3.2 Performance Evaluation on the JAFFE Database
We also evaluated the BDBN framework trained and tested

on the JAFFE database with a leave-one-subject-out train-

ing/testing strategy. We employed two settings: the first

one, denoted as “BDBN with JAFFE Only” (BDBNJ ), em-

ployed only the images in JAFFE for training, and the

other one, denoted as “BDBN with JAFFE and CK+”

(BDBNJ+C), was trained on the CK+ database first and

then refined using the images in JAFFE. To make a fair com-

parison, we only compared with the-state-of-the-art meth-

ods employing the leave-one-subject-out strategy and rec-

ognizing 7 expressions. As shown in Table 3, the BDBN

with both settings outperformed the other methods. More-

over, the BDBNJ+C achieved the best performance, which

implies that a learned BDBN can be effectively adapted to

a new dataset with additional training data.

5. Conclusion and Future Work
In this work, we propose a novel BDBN framework to

combine feature learning/strengthen, feature selection, and

classifier construction in a unified framework. Specifically,

features are fine-tuned jointly and are selected to form a

strong classifier in a novel BTD-SFS process. Through this

framework, highly complex features can be learned from fa-

cial images, and more importantly, the discriminative capa-

bilities of selected features are strengthened iteratively ac-

cording to their relative importance to the strong classifier.

As demonstrated in the experiments, the BDBN learning

framework outperformed all methods in comparison includ-

ing the state-of-the-art techniques evaluated on two public



facial expression databases. There are several future di-

rections to extend this framework. First, we will evaluate

BDBN in more challenging scenarios, e.g., more sponta-

neous expressions with face pose variations. Second, this

BDBN framework can be immediately employed in other

classification problems, such as recognizing facial action

units. Finally, we expect to extend the framework to handle

video data, from which dynamic aspect of facial expressions

can be captured and employed.
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