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Abstract

Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone
snails, terebrids, and turrids) is identifying those species with a venom apparatus. Previous analyses of western Pacific
terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to
efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus.
The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or
absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid
samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern
Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa.
Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acusdo not
have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular
phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages
that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource,
while providing supplementary information towards understanding terebrid evolutionary diversification.
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Introduction

The auger snails (family Terebridae) are a distinctive group of
carnivorous, sand-dwelling gastropods included in the superfamily
Conoidea, along with cone snails and turrids [1]. Species in this
large gastropod superfamily (- 10,000 species) generally use
venom to capture their prey [2,3]. Conoidean venoms are of
considerable interest as they are a rich source of neuroactive
peptides, widely used to investigate cellular communication in the
nervous system [4-6]. Some Conoidean venom components have
been used directly for a variety of biomedical applications [7,8].
Several peptides from cone snail venoms have reached human
clinical trials, and one (Prialt) has been approved as a drug for
intractable pain [9,10].

In contrast to cone snail toxins (conotoxins), terebrid toxins are
largely uncharacterized and no physiological target for any
terebrid venom peptide has been defined. However, the very
preliminary characterization carried out to date suggests that the
venoms of the Terebridae have novel components, distinct from
other conoidean venoms [11,12]. Thus, terebrid venoms are
potentially a rich, unexplored pharmacological resource.

A significant fraction of the _ 300—400 species in the Terebridae
do not have the characteristic anatomical structures that comprise
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the venom delivery apparatus of conoidean snails, namely a
venom bulb, venom duct, and radula sac [13—16]. Analysis of shell
morphology alone cannot generally determine whether or not a
species in the Terebridae has a venom apparatus. The non-
monophyly of most of the terebrid genera makes the attribution
of a specimen to a particular genus challenging. Therefore,
identifying a priori which species to collect for the analysis of venom
components is problematic.

The first molecular phylogeny of the Terebridae based on a
three-gene matrix of molecular markers 128, 16S, and cytochrome
oxidase I (COI), was recently published[16]. The data suggest that
the family Terebridae could be divided into at least 5 distinctive
generic clades: Acus, Terebra, Hastula, Myurella, and a sister clade of
the four others that includes Terebra jungi (recently revised to
Pellifronia jungi [17]). Furthermore, based on species clusters, it was
suggested that molecular data may be a useful tool to identify
which terebrid species have a venom apparatus and which do not.
For these molecular criteria to reliably indicate which species of
terebrids are venomous, the criteria should be applicable to all
Terebridae.

The original correlation between venom apparatus and
molecular phylogeny was established using only western Pacific
species [16]. This paper examines the validity of correlating
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molecular phylogeny and venom apparatus by increasing the
diversity of taxa sampled and the geographic coverage to include
terebrid samples from the eastern Pacific. There are currently 55
described species of terebrids found in the Panamic fauna as
defined by Keen [18]. In terms of geographic distribution, the
Panamic tropical molluscan marine fauna is arguably highly
divergent from that of the western Pacific. Thus, whether the
molecular phylogeny/venom apparatus correlation established for
western Pacific terebrid samples can be used to assess eastern
Pacific terebrid snails is a central issue addressed by this study.
Presented here is the first molecular analysis of Panamic
Terebridae, which is used to highlight both phylogenetic and
taxonomic issues for this group.

Materials and Methods

Material

Panamic specimens used were dredged from the Las Perlas
Archipelago in 2008, using The Smithsonian Tropical Research
Institute research vessel RV-Urraca. The collected material was
specifically fixed for molecular and anatomical analysis. Living
specimens were anesthetized in MgCl, isotonic with seawater for 1
or 2 hours. Samples were dissected and a piece of tissue (usually
foot) was fixed in 95% ethanol. Table 1 lists all terebrid specimens
used in this study, including the specific geographical coordinates
of where they were collected (for map, see Figure 1). Taxonomic
assignments were made based on shell morphology. Vouchers of
the Panamic specimens are deposited in the Muséum National
d’Histoire Naturelle (MNHN) of Paris. Included with the 33
Panamic taxa are sequences from specimens collected in the
western Pacific and analyzed in Holford et al. 2009 [16].
Outgroups are identical to those used in Holford et al. 2009
[16] and identified in Table 1.

Sequencing

DNA was extracted from foot or other tissue using Qiagen
QIAamp Dneasy Tissue kit. Fragments of mitochondrial genes
128, 16S and COI were amplified using universal primers 12S1/
1283 [19], 16Sar/16Sbr [20], and LCO1490/HCO2198 [21]
respectively. PCR reactions were performed in 25 ml, containing
3 ng of DNA, 10X reaction buffer, 2.5 mM MgCl,, 0.26 mM
dNTP, 0.3 mM each primer, 5% DMSO, and 1.5 units of
Qbiogene Q-Bio Taq or AdvantageH 2 PCR Kit from Clontech.
Amplification was performed as previously described [16]. PCR
products were purified using USB ExoSAP-ITH or Quiagen PCR
purification kit and sequenced. All genes were sequenced in both
directions. Sequences were deposited in GenBank (Genbank
accession numbers: FJ707376-FJ707472). Specimens data and
COI sequences were also deposited in BOLD (Barcode of
Life Data Systems, project CONO - Conoidea barcodes and
taxonomy).

Molecular and Phylogenetic analyses

COI sequences were manually aligned and 12S and 16S were
automatically aligned using ClustalW multiple alignment imple-
mented in BioEdit version 7.0.5.3 [22]. The accuracy of automatic
alignments was confirmed by visual inspection. Hyper-variable
regions of 125 and 16S genes were excluded from further analyses
due to ambiguities in the alignments. All the western Pacific
terebrid sequences obtained by Holford et al. 2009 [16] were
included in this new dataset.

Phylogenetic analyses were based on reconstructions using two
approaches: (i) Maximum Likelihood (ML) using PhyML 2.4.4
[23], where support of nodes were estimated with 100 bootstrap
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replicates, and (ii) Bayesian Analyses (BA) consisting of six Markov
chains, 10,000,000 generations each, with a sampling frequency of
one tree each thousand generations, run in four parallel analyses
using MrBayes [24]. The number of swaps that are tried each time
the chain stops for swapping was 4, and the chain temperature was
set at 0.05. Twenty-five percent of the first generations were
discarded as burnin, which correspond to the time the chain took
to reach stationarity. For both ML and BA, the best-fitting model
of evolution was applied, as determined by Modelgenerator V.85
following the Hierarchical Likelihood Ratio Test (with four
discrete gamma categories). Variation was partitioned among
genes and gene-specific model parameters were used. Each gene
was first analysed separately and then the combined dataset was
analysed. For the combined dataset one model of evolution for the
concatenation of the three genes was used for the ML analysis. For
the BA, a different model was applied for each gene as determined
by Modelgenerator.

Results

Distribution of the Panamic Terebridae

The 33 Panamic specimens analyzed were assigned to four
different terebrid species: Acus strigatus, Terebra argyosia, T. ornata,
and T. cf. formosa. All taxonomic assignments made are based on
shell morphology and later confirmed by molecular results. The
T. argyosia specimens (collection sites 1, 2, 3, and 4) appear to be
present both in the northern and southern ends of the archipelago
(Figure 1A). A. strigatus was found between Punta Coco on Isla Del
Rey and San Jose (sites 4 and 6). T. ornata was collected along the
eastern coast of San Jose (site 5) and Terebra cf. formosa at site 7.
Examples of the actual specimens analyzed are shown in
Figure 1B.

Phylogenetic analyses

After alignment, DNA fragments of 658, 534, and 455 bp were
obtained for COI, 12S, and 16S genes, respectively. No
contradictions were observed when independently constructed
gene trees for COI, 128, and 16S genes were analyzed (results not
shown). These Panamic sequences were combined with sequences
from western Pacific terebrid specimens to reconstruct the
phylogeny illustrated in Figure 2. The best model of evolution
for the COI, 12S and 16S and for the combined dataset is
GTR+I+G (General Time Reversible model, with invariant sites
and a gamma law parameter) for all genes, with I=0.51 and
a=0.68 for COI, 1=0.6 and a=0.62 for 12S, 1=0.34 and
a=0.32 for 16S and 1=0.41 and a=0.4 for the combined
dataset. Results obtained with Maximum Likelihood (ML) and
Bayesian analyses (BA) are highly similar, however, the support
values for ML were generally weaker.

Of the 5 distinct terebrid clades previously identified, Clade A
(P. jungi), Clade B (Acus), Clade C (Terebra), Clade D (Hastula), and
Clade E (Myurella), the Panamic sequences reported here fall into
the Acus and Terebra clades. As a result, in order to reduce the size
of the tree and to focus on the Panamic clades, only the Acus and
Terebra clades are detailed in Figure 2. The other -clades,
represented by a single branch, are identical to those in Holford
et al. 2009 [16].

The phylogenetic analysis strongly indicates that the Panamic
Acus strigatus specimens in our sampling are within the Acus clade
(Posterior Probablity (PP) = 1; Bootstraps (B) = 98). The Acus clade
comprises a prevalence of western Pacific species (A. felinus, A.
chloratus, A. maculatus, A. areolatus, A. crenulatus, and A. dimidatus). The
monophyly of the Panamic specimens identified as belonging to the
Terebra clade is well-supported (PP = 1; B= 96) within this group. As
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Table 1. Listof terebrid samples used in this study. VA= venom apparatus.

Genus Species COI 128 16S VA Station number - Coordinates/Depth MNHNnumber
Panamic Specimens

|Acus strigatus (Sowerby, 1825) X X X No 3—08ul1.89N, 078u57.19W/21.4 m 42093
Acus strigatus (Sowerby, 1825) X X X No 4-08ul1.89N, 078u57.59W/22.4 m 42105
IAcus strigatus (Sowerbv. 1825) X X X No 5—08ul4.79N. 079u05.559W/17.5 m 42136
Acus strigatus (Sowerby, 1825) X X X No 5-08ul4.79N, 079u05.559W/17.5 m 42137
IAcus strigatus (Sowerbv. 1825) X X No 9—-08u30.19N. 079u06.09W/21 m 42159
Terebra argosyia (Olsson, 1971) X X X Yes 1-08u37.189N, 079u01.129W/25 m 42068
ITerebra argosvia (Olsson. 1971) X X X Yes 1-08u37.189N. 079u01.129W/25 m 42069
Terebra argosyia (Olsson, 1971) X Yes 2-08ul5.619N, 078u51.579W/24.1 m 42071
ITerebra argosvia (Olsson. 1971) X X X Yes 2—08ul5.619N. 078u51.579W/24.1 m 42072
Terebra argosyia (Olsson, 1971) X X X Yes 2-08ul5.619N, 078u51.579W/24.1 m 42073
ITerebra ornata (Grav. 1834) X Yes 1-08u37.189N. 079u01.129W/20 m 42074
Terebra argosyia (Olsson, 1971) X X X Yes 3-08ul 1.89N, 078u57.19W/21.4 m 42084
ITerebra argosvia (Olsson. 1971) X X X Yes 3—08ul1.89N. 078u57.19W/21.4 m 42085
Terebra argosyia (Olsson, 1971) X X X Yes 3-08ul 1.89N, 078u57.19W/21.4 m 42086
ITerebra argosvia (Olsson. 1971) X X X Yes 3—08ul1.89N. 078u57.19W/21.4 m 42087
Terebra argosyia (Olsson, 1971) X X X Yes 3-08ul 1.89N, 078u57.19W/21.4 m 42089
ITerehra argosvia (Olsson. 1971) X X X Yes 3—08ul1.8IN. 078u57.19W/21.4 m 42090
Terebra argosyia (Olsson, 1971) X X X Yes 3-08ul 1.89N, 078u57.19W/21.4 m 42091
ITerebra argosvia (Olsson. 1971) X X X Yes 3—08ul1.89N. 078u57.19W/21.4 m 42092
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/24 m 42099
ITerebra argosvia (Olsson. 1971) X X X Yes 4-08ul1.89N. 078u57.59W/24 m 42100
Terebra argosyia (Olsson, 1971) X Yes 4-08ul1.89N, 078u57.59W/24 m 42102
ITerehra argosvia (Olsson. 1971) X X X Yes 4-08ul 1.8YN. 078u57.59W/22.4 m 42103
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/22.4 m 42104
ITerebra argosvia (Olsson. 1971) X X X Yes 4-08ul1.89N. 078u57.59W/22.4 m 42118
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/22.4 m 42119
ITerebra argosvia (Olsson. 1971) X X X Yes 4-08ul1.89N. 078u57.59W/22.4 m 42120
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/22.4 m 42121
ITerehra argosvia (Olsson. 1971) X X X Yes 4-08ul 1.8YN. 078u57.59W/22.4 m 42122
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/22.4 m 42123
ITerebra argosvia (Olsson. 1971) X X X Yes 4-08ul1.89N. 078u57.59W/22.4 m 42124
Terebra argosyia (Olsson, 1971) X X X Yes 4-08ul1.89N, 078u57.59W/22.4 m 42125
ITerebra ornata (Grav. 1834) X X X Yes 6—08u14.949N. 079u05.79W/14.3 m 42131
Terebra cf. formosa X X X Yes 7-08ul6.869N, 079u02.679W/39.2 m 42152
ITerebra argosvia (Olsson. 1971) X X Yes 8—08u24.509N. 079u04.669W/18.4 m 42153
IndoPacific Specimens

|Acus maculatus (Linnaeus, 1758) X X X No 9u37.49N, 123u46.99E, 3-20 m 30370
Acus dimidiatus (Linnaeus, 1758) X X X No 15u32.59S, 167ul0.59E, 5-10 m 30372
IAcus dimidiatus (Linnaeus. 1758) X X X No 15u36.99S. 167ul0.5%E. 6-33 m 30373
Acus crenulatus (Linnaeus, 1758) X X X No 15u34.49S, 167ul3.19E, 9 m 30377
IAcus dimidiatus (Linnaeus. 1758) X X X No 15u32.59S. 167ul0.5%E. 5-10 m 30379
Acus dimidiatus (Linnaeus, 1758) X X X No 15u35.49S, 166u59.79E, 3-37 m 30381
IAcus maculatus (Linnaeus. 1758) X X X No 15u28.79S. 167ul5.29E. 19 m 30389
Acus dimidiatus (Linnaeus, 1758) X X X No 15u38.19S, 167u05.99E, intertidal 30428
IAcus felinus (Dillwvn. 1817) X X X No 9u37.49N. 123u54.5E. 6-8 m 30443
Acus felinus (Dillwyn, 1817) X X X No 9u37.49N, 123u54.5E, 6-8 m 30445
IAcus chloratus (Lamarck. 1822) X X X No 15u22.69S. 167ul 1.69E. intertidal 30490
Acus crenulatus (Linnaeus, 1758) X X X No 15u34.49S, 167ul3.19E, 9 m 30494
IAcus areolatus (Link, 1807) X X X No 9u37.49N, 123u46.9%E, 3-20 m 30587
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Table 1. Cont.

Genus Species COI 128 16S VA Station number - Coordinates/Depth MNHNnumber
Cinguloterebra cf. fujitai (Kuroda & Habe, 1952) X X Yes 9u27.49N, 123u49.49E, 273-356 m 15724
Cinguloterebra cf. fenestrata (Hinds. 1844) X X Yes 9u36.29N. 123u43.89E. 382-434 m 16735
Cinguloterebra cf. fenestrata (Hinds, 1844) X Yes 9u29.49N, 123u44.49E, 271-318 m 30390
Cinguloterebra triseriata (JE Grav. 1824) X X Yes 9u35.39N. 123u52.29E. 84-87 m 30404
Cinguloterebra fenestrata type I X X Yes 9u39.29N, 123u47.59E, 255-268 m 30410
Cinguloterebra fenestrata tvoe Il X X Yes 9u39.29N. 123u47.5%E. 255-268 m 30418
Cinguloterebra lima (Deshayes, 1857) X Yes 15u32.59S, 167ul0.59E, 5-10 m 30485
Cinguloterebra lima (Deshaves. 1857) X X Yes 8u39.59 S. 157u23.09 E. 214-243 m 30487
Cinguloterebra jenningsi (RD Burch. 1965) X Yes 15u28.69S, 167ul5.19E, 3-31 m 30544
Cinguloterebra anilis (Roding. 1798) X X Yes 15u35.29S. 167u59.49E. intertidal 30552
Hastula strigilata (Linnaeus, 1758) X Yes 15u35.29S, 167u59.49E, intertidal 30420
Mvurella affinis (JE Grav 1834) X X No 9u37.49N. 123u54.5%E. 6-8 m 30430
Terebra guttata (Roding, 1798) X X Yes 15u33.19S, 167ul2.29E, 3-40 m 30376
Terebra babvlonia (Lamarck. 1822) X X Yes 15u31.19S. 167ul0.5%E. 7 m 30380
Terebra subulata (Linnaeus, 1767) X Yes 15u36.69S, 167ul0.19E, 8-20 m 30386
Terebra guttata (Rodine. 1798) X X Yes 15u33.19S. 167ul2.29E. 3-40 m 30387
Terebra laevigata (JE Gray, 1834) X X Yes 15u36.99S, 167ul0.59E, 6-33 m 30394
Terebra tricolor(GB Sowerbv L. 1825) X X Yes 15u33.19S. 167ul7.8%E. 15-25 m 30409
Terebra laevigata (JE Gray, 1834) X Yes 9u36.89N, 123u52.29E, intertidal 30431
Terebra subulata (Linnaeus. 1767) X X Yes 9u37.49N. 123u54.5E. 6-8 m 30444
Terebra subulata (Linnaeus, 1767) X Yes 9u32.89N, 123u42.19E, 3-35 m 30483
Terebra tricolor(GB Sowerbv L. 1825) X X Yes 15u38.59S. 167ul5.19E. 13 m 30493
Terebra laevigata (JE Gray, 1834) X Yes 15u26.69S, 167ul5.29E, intertidal 30597
Terebra laevigata (JE Grav. 1834) X X Yes 15u43.49S. 167ul5.09E. 6 m 30603
Terebra laevigata (JE Gray, 1834) X Yes 15u319S, 167u099E, intertidal 30613
Terebra laevigata (IE Grav. 1834) X X Yes 15u319S. 167u09YE. intertidal 30632
Pellifronia jungi (Lai, 2001) X Yes 9u37.59N, 123u40.29E, 606631 m 30395
Outerouns

Cochlespira sp. (Turridae) X X 21u109S, 158u39%E, 650-723 m 40568
IConus nereis (Conidae) X X Yes 9u32.59N. 123u41.8%E. 111-115 m 17922
Harpa sp. (Harpidae) X 9u32.59N, 123u41.89E, 111-115 m 40569
Ilotyrris cingulifera (Turridae) X X 15u33.69S, 167ul6.69E, 8-9 m 17685

doi:10.1371/journal.pone.0007667.t001

illustrated in the tree there are three distinct Panamic species
present, Terebra argyosia, Terebra ornata, and Terebra cf. formosa.

Character evolution

All Panamic specimens collected were dissected and the
presence or absence of a venom apparatus was noted (Table 1).
The presence/absence of a venom apparatus is a character trait
that can be correlated with the molecular phylogeny of these
specimens. The character evolution of the venom apparatus in the
Terebridae was mapped previously for western Pacific specimens
[16], indicating this group has lost the venom apparatus at least
twice during its evolution. As indicated in Figure 2, the Panamic
species placed in the Acus clade, A. strigatus, did not have a venom
apparatus (highlighted with a white box). However, T. ornata, T.
argyosia, and T. cf. formosa, all have a venom apparatus and fall
within the genus Terebra, which contains other terebrid species
identified as having a venom apparatus [13,25] (highlighted by a
black box).
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Discussion

Predatory marine snails of the superfamily Conoidea produce
several neurotoxins in their venom that are used to capture and
subdue prey [26-28]. The characteristic venom apparatus of
conoideans is not present in a significant fraction of species in the
family Terebridae. For this work, four Panamic species, Acus
strigatus, Terebra argyosia, Terebra ornata, and Terebra cf. formosa, were
analyzed using a combination of molecular phylogeny and
character trait evolution based on the presence or absence of a
venom apparatus (Figure 2). The molecular characters are
completely congruent with anatomical data: all specimens without
a venom apparatus are in the Acus clade, and all specimens with a
venom apparatus are in the Terebra clade. Thus, DNA sequences
can be used to infer ifa terebrid species has a venom apparatus or
not. This study confirms the correlation between phylogeny and
the presence or absence of the venom apparatus previously
established [16]. The present findings can be used to broaden the
current knowledge of the Terebridae as it pertains to their
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Figure 1. Panamic terebrid collection site and specimens. A. The Las Perlas Archipelago, located off the west coast of Panama (see Inset), is
the collection site for the terebrids analyzed. The numbers shown on the map refer to the stations for the Panamic specimens listed in Table 1. B. Las
Perlas specimens of Acus and Terebra analyzed in this study. Top left, Acus strigatus. Bottom left, Terebra ornata. Top right-most specimen, Terebra cf.

formosa. All other specimens are Terebra argyosia.
doi:10.1371/journal.pone.0007667.g001

taxonomy and the potential use of their toxins to characterize ion
channels and receptors in the nervous system.

Terebrid taxonomic considerations

The three Panamic species T. argyiosa, T. cf formosa and T. ornata
form a well supported monophyletic branch (PP=1; B=96)
within the clade that includes the type species of the genus Terebra,
T. subulata. Therefore we provisionally treat all species in this clade
as belonging to the genus Terebra. Subgeneric divisions may be
feasible, but it seems best to defer the comprehensive taxonomic
treatment of the genus Terebra until greater taxon sampling has
been achieved.

The species-level taxonomy of Terebra species from the Panamic
region is generally problematic. The results obtained so far provide
a guide for suggesting which Panamic forms are likely to belong to
Terebra, and thus have a venomous apparatus. However,
considerable care should be taken before assigning definitive
species designations for forms in this group. This problem is
highlighted by the specimens of a variety of eastern Pacific
terebrids shown in Figure 3. Note that the specimens assigned to
T. argyosia and T. ornata from Mexico are quite different in shell
pattern from the specimens from Panama. Two non-Panamic
species are also included in the figure, a western Pacific species, T.
subulata, and an Atlantic species that we expect will also belong to
the same Terebra clade, T. taurina.

In this instance the molecular characters used in the
phylogenetic analyses confirmed the shell-based morphological
characters used to identify different terebrid species. The
specimens of Terebra argyosia comprise the largest group of Las
Perlas specimens collected that have a venom apparatus.
Molecular analysis implies that T. argyosia, T. ornata and T. cf.
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formosa are indeed three different species. However, the relatively
small number of specimens included for T. ornata and T. cf. formosa
does not allow an estimation of the intra and interspecific
variability, and species delimitation hypotheses would be more
accurately tested by adding replicates. The type locality for T.
formosa is Panama [29]. The shell of the T. cf. formosa specimen
used in this study (Figure 1B) is very worn and therefore not
readily identified, but appears to have the three characteristic
squarish brown spots on the body whorl, a short columella that is
recurved and heavily plicated, and a smooth subsutural band as
described in Bratcher & Cernohorsky [29]. Therefore, as a test of
the shell-based ID, the resulting relationships for T. argyosia, T. cf.
formosa, and T. ornata are in agreement with what is expected.

Terebrid toxin characterization

The Panamic Terebra argyosia/ornata/formosa complex used in this
study have the traits necessary for probing the biochemical
characterization of their venom, namely they are found in large
quantities and can be easily collected. A combined phylogenetic
and toxinological approach will accelerate the investigation of the
Terebridae significantly. Genes that encode venom peptides
belong to a special category termed ‘‘exogenes,”’ as their gene
products act outside the organism [5,6,30]. Such genes are
expected to diverge from each other extremely rapidly. If the
various Panamic forms in the Terebra clade are separate species,
then their exogenes should have diverged and an entirely different
spectrum of venom components would be found in each species.
If, however, these are morphological variants of the same species,
the same gene sequences (with minor allelic variation) should be
observed. Correlating molecular phylogeny with the presence of
venom apparatus is a significant advance that will aid in the
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Figure 2.Combined Phylogenetic analysis of Panamicand western Pacific Terebridae.Shown is a consensus tree (BA) using COL, 16S, and
12S data sets. Posterior probabilities and bootstrap values are specified for each node.Shaded clades were collected in Panama.The bar on the right
shows which taxa have venom glands (black bars) and which do not (white bars). Clade A refers to the sister group that includes Pellifronia jungi,
Clades D and E refer to the Hastula and Myurel/a clades respectively;these clades were identified previously. Representative shells are shown as
follows: 1. Acus felinus. 2. Acus strigatus. 3. Terebra argosyia. 4. Terebra subulata. 5. Cingu/oterebra ani/is.
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Figure 3. Diversity of Eastern Pacific Terebra. The figure shows the diversity of the venomous eastern Pacific forms tentatively assigned to Clade
C, Terebra. The samples from Mexico, labeled (b—d), appear different to the samples from Panama, which are labeled (e—f). These are compared to the
left-most specimen (a), Terebra subulata from the western Pacific and the right-most specimen (f), Terebra taurina from the western Atlantic.

doi:10.1371/journal.pone.0007667.g003

efficient discovery of new pharmacologically-active compounds

from the Terebridae,

phylogeny of this group.
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